Deneb selbst wird irgendwann so weit aufgebläht sein, dass er zu einem Roten Überriesen abkühlt. Wegen ihrer kurzen Lebensdauer sind die Hyperriesen daher auch schwer zu entdecken, obwohl sie so hell sind.

Wer genau aufgepasst hat, wird merken, dass noch eine Leuchtkraftklasse fehlt. Wir haben bei den Zwergen der Klasse V angefangen und uns mit steigender Leuchtkraft bis zur Klasse 0 der Hyperriesen hoch gearbeitet. Aber da ist ja auch noch die Klasse VI und das sind die “Unterzwerge” (die übrigens manchmal auch anstatt mit der römischen Zahl VI mit den Kleinbuchstaben “sd” für “subdwarf” bezeichnet werden) Das sind Zwerge, die im Vergleich zu ihren Kollegen auf der Hauptreihe bei gleicher Temperatur eine deutlich geringere Leuchtkraft haben. Ein Unterzwerg vom Spektrakltyp G ist also an seiner Oberfläche genau so heiß wie unsere Sonne, ein Zwerg vom Typ G. Der Unterzwerg leuchtet aber nicht so hell wie die Sonne und der Grund dafür ist vermutlich seine chemische Zusammensetzung.

Ein normaler Stern besteht fast komplett aus Wasserstoff und Helium. Alle anderen chemischen Elemente werden von den Astronomen als “Metalle” bezeichnet (obwohl das natürlich nichts mit der chemischen Definition des Begriffs “Metall” zu tun hat). Aber nicht jeder Stern enthält gleich viele Metalle. Direkt nach dem Urknall gab es ja nur Wasserstoff und Helium und all die anderen Elemente mussten erstmal bei der Kernfusion im Inneren der erste Sterne entstehen. Die allerersten Sterne im Universum enthielten also überhaupt keine Metalle. Nachdem diese ersten Sterne dann bei Supernova-Explosionen ihre Leben beendet und die neu geschaffenen Metalle im Universum verteilt hatten, konnte die zweite Generation der Sterne schon ein paar Metalle von Anfang an enthalten. Sie produzierten aber auch selbst wieder neue Metalle und die dritte Generation fing mit noch mehr Metallen an. Unsere Sonne gehört zu dieser dritten Generation der “metallreichen” Sterne. Die kühlen Unterzwerge dagegen gehören zur metallarmen zweiten Generation. Die Menge an Metallen in einem Stern bestimmt aber unter anderem, wie gut oder schlecht die Strahlung entweichen kann. Je weniger Metalle, desto leichter kann die Strahlung aus dem Kern nach außen entkommen und desto geringer ist der Strahlungsdruck. Dadurch kann die Gravitationskraft den Stern stärker zusammendrücken und man bekommt einen Zwergstern, der kleiner ist, als er eigentlich sein sollte. Eben einen Unterzwerg.

Es gibt aber auch noch heiße Unterzwerge, also Sterne, die mit Temperaturen von über 10.000 Grad so heiß sind, wie die heißen O oder B-Sterne auf der Hauptreihe, aber trotzdem nicht so groß. Sie haben eine ganz andere Geschichte als ihre kühlen Kollegen. Ein heißer Unterzwerg unterscheidet sich stark von einem normalen Stern, da er nicht hauptsächlich aus Wasserstoff besteht. Es handelt sich Sterne die fast komplett aus Helium bestehen und nur von einer dünnen Hülle aus Wasserstoff umgeben sind. Wie sie genau entstanden sind, ist noch unklar aber man geht davon aus, dass es sich dabei um die Kerne von ehemaligen Roten Riesen handelt, die ihre äußeren Schichten aus Wasserstoff fast komplett verloren haben. Das kann zum Beispiel in Doppelsternen passieren, wenn die sich zu nahe kommen und dabei einer Material vom anderen an sich reißt.

Es gäbe noch jede Menge andere spezielle Klassifikationen, die von den Astronomen im Laufe der Zeit eingeführt worden sind, um alle Details und Varianten der Sternentwicklung entsprechen zu bezeichnen. Aber das ist dann wirklich nur noch etwas für Spezialisten. Und jetzt wissen wir immerhgin, was es bedeutet, wenn Astronomen sagen, die Sonne wäre ein Stern vom Typ G2V. Wir umkreisen einen nicht zu heißen, nicht zu kühlen gelben Zwergstern, der sich auf der Hauptreihe befindet.

1 / 2 / 3

Kommentare (1)

  1. #1 André
    12. Juni 2015

    Blöde Frage: spricht man tatsächlich von Sterngeneration 1 bis 3? Und ist die Sonne dann tatsächlich Generation 3?
    Ich kenne nur den Begriff Sternpopulation, wobei dann die Sonne zur Population 1 gehört, und die früheren Sterne zu höherwertigen Populationen – also genau umgekehrt …