The making of Rijndael

Joan Daemen¹ and Vincent Rijmen²

¹Radboud University ²KU Leuven

Histocrypt 2019, June 23-26, Mons, Belgique

Dark ages of symmetric cryptography

- Before the discovery of differential and linear cryptanalysis
- Research in stream ciphers dominated by
 - linear feedback shift register (LFSR) bases schemes
 - study of properties of sequences, e.g., linear complexity
- Research in block ciphers dominated by
 - Data Encryption Standard (DES)
 - design rationale not published
 - study of properties of (vector) boolean functions

How to build a block cipher, back then

- Claude Shannon's concepts:
 - confusion: mainly associated with non-linearity
 - diffusion: mixing of bits
- Property-preserving paradigm
 - security of a block cipher lies in its S-boxes
 - build strong cipher with right properties
 - ...from S-boxes with same properties
- Non-linearity
 - distance to linear functions
 - bent and almost perfect non-linear (APN) functions
- Diffusion
 - avalanche effect
 - strict avalanche criterion (SAC)

Discovery of differential and linear cryptanalysis

- Biham and Shamir 1990: differential cryptanalysis (DC)
 - exploits high-probability difference propagation
 - to guess a partial key used in remaining rounds
 - propagation along $trail\ Q$ with probability DP(Q)
- Matsui 1992: linear cryptanalysis (LC)
 - exploits high correlations over all but a few rounds
 - to guess a partial key used in remaining rounds
- Statistical attacks that require many input-output pairs
- Many flavours, variants and combinations exist
- LC/DC resistance is foundation of block cipher design

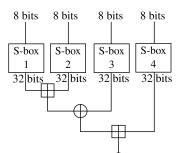
Meanwhile Joan @ COSIC: wide trail strategy

- Probability of a difference propagation trail: DP(Q) is the product of those of its active S-boxes: $\prod_i DP(Sbox_i)$
- DC of DES: few active S-boxes per round
- decrease DP(Q): S-boxes with low maximum DP
 - $DP_{max}(Sbox) \ge 2^{1-b}$ with b S-box width
 - so this implies big S-boxes
- Cost of S-boxes strongly increases with size
 - Software: lookup tables of size 2^b
 - Hardware: increase of combinatorial logic

Principle of the wide trail strategy [PhD Daemen, 1995]

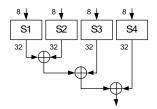
- Many active S-boxes rather than *big* S-boxes
 - Assure that any trail has many active S-boxes
 - multiple active S-boxes per round
- Separate layers for nonlinearity, mixing and dispersion
 - nonlinear layer: e.g. S-boxes with some max. DP and LP
 - mixing layer: local spreading of differences (and correlations)
 - dispersion layer: moves nearby bits to remote positions

Branch number


- Desired properties of diffusion layer:
 - avalanche: few active S-boxes at input → many at output
 - lacktriangle avalanche of inverse: few at output ightarrow many at input
- lacksquare Branch number $\mathcal B$ of a diffusion layer
 - minimum number of active S-boxes at input and output
 - two types: linear and differential
 - relative to a state partition in bits, bytes, or ...

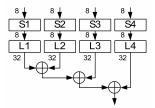
A Fortunate Event

- Summer 1993:
 - COSIC gets some classified contract work
 - Security evaluation of a proprietary cipher
- Profs. Vandewalle and Govaerts decide to put on it:
 - Joan Daemen
 - Vincent Rijmen
- Result of contract work:
 - Some new types of cryptanalysis
 - Classified, unfortunately
 - Later re-invented and published
 - ...by someone else


- Joan's last month in COSIC
- Blowfish [Schneier, 1993]
- F function:

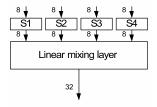
- Great potential
 - Only 4 TLU and 3 add.
 - Very high diffusion
- Cryptanalysis contest
- Won by Serge Vaudenay
 - Exploiting local collisions
 - In S-box: weak keys
 - In F-function
 - [Vaudenay, 1996]
- But it can be fixed

- 8-to-32-bit Sboxes
- Derived from key


- Mixing ∘ S-box
- Both invertible

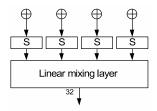
4 TI U and 4 XORs

- No need for Feistel
 - 64-bit block: 8-byte wide
 - 128-bit block: 16-byte wide
- S-boxes
 - Just take a single one
 - Criteria: max DP and LP
- Linear mixing layer
 - Maximum $\mathcal{B}: n+1$
 - n = 8, 16: seemed possible
- Challenge: finding right S-box and mixing layer


- Mixing ∘ S-box
- Both invertible

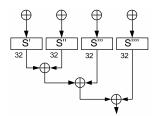
■ 4 TLU and 4 XORs

- No need for Feistel
 - 64-bit block: 8-byte wide
 - 128-bit block: 16-byte wide
- S-boxes
 - Just take a single one
 - Criteria: max DP and LP
- Linear mixing layer
 - Maximum $\mathcal{B}: n+1$
 - n = 8, 16: seemed possible
- Challenge: finding right S-box and mixing layer


- Mixing ∘ S-box
- Both invertible

4 TLU and 4 XORs

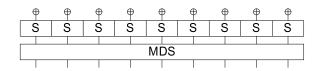
- No need for Feistel
 - 64-bit block: 8-byte wide
 - 128-bit block: 16-byte wide
- S-boxes
 - Just take a single one
 - Criteria: max DP and LP
- Linear mixing layer
 - Maximum \mathcal{B} : n+1
 - n = 8, 16: seemed possible
- Challenge: finding right S-box and mixing layer


- Mixing S-box
- Both invertible

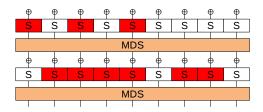
4 TI U and 4 XORs

- No need for Feistel
 - 64-bit block: 8-byte wide
 - 128-bit block: 16-byte wide
- S-boxes
 - Just take a single one
 - Criteria: max DP and LP
- Linear mixing layer
 - Maximum \mathcal{B} : n+1
 - n = 8, 16: seemed possible
- Challenge: finding right S-box and mixing layer

- Mixing S-box
- Both invertible


4 TI U and 4 XORs

- No need for Feistel
 - 64-bit block: 8-byte wide
 - 128-bit block: 16-byte wide
- S-boxes
 - Just take a single one
 - Criteria: max DP and LP
- Linear mixing layer
 - Maximum \mathcal{B} : n+1
 - n = 8, 16: seemed possible
- Challenge: finding right S-box and mixing layer


Autumn of 1995: SHARK

- Joan contacts Vincent to work out these ideas
 - later Bart Preneel, Antoon Bosselaers and Erik De Win joined
 - result: paper on SHARK [SHARK, FSE 1996]
- 3-layers: key addition, b-bit S-boxes and n-wise mixing
- Mixing layer with maximum branch number
 - Link with maximum distance separable (MDS) codes
 - # active S-boxes per two rounds $\geq \mathcal{B} = n+1$
- Concretely in SHARK:
 - \bullet b = 8, n = 8 so block length is 64
 - S-box: multiplicative inverse in GF(2⁸) [Nyberg, 1994]

SHARK principle illustrated

SHARK principle illustrated

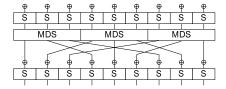
The trouble with SHARK

- In general: *n*-wise MDS layer is expensive
 - software: n look-up tables with 2^8 entries of size 8n
 - hardware: # gates per bit grows quickly as a function of n
 - instead of an expensive S-box,
 - ...we now have an expensive MDS matrix

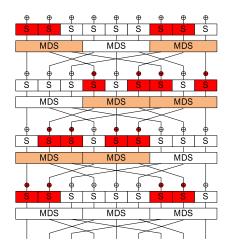
1996: Square

- Idea: add a dispersion layer
 - like in earlier designs, e.g., SUBTERRANEAN and 3-WAY
 - promising pencil-and-paper exercises
 - # active S-boxes per 4 rounds always large!
- Joan contacts Vincent again to work this out
 - this led to SQUARE [SQUARE, FSE 1997]
 - later Lars Knudsen joined

The Square approach


- Add a dispersion layer moving bytes around
- Use an optimal dispersion layer
 - moves bytes in MDS block to all different MDS blocks
 - we proved: # active S-boxes per four rounds $\geq \mathcal{B}^2$
- SQUARE concretely
 - 16 bytes in 4 by 4 square
 - same mixing layer as Rijndael: circulant matrix
 - dispersion: taking transpose of square
 - S-box: same one as later in Rijndael
 - added affine layer
 - to counter interpolation attacks [Jacobsen, Knudsen, '97]
 - lightweight linear recursive key schedule

Lars' Square attack


- Our working version had only 6 rounds because:
 - DP of 4-round differential trails $< 2^{-150}$
 - LP of 4-round linear trails $\leq 2^{-150}$
- Lars' Square attack
 - input sets: constant in some and complete in other bytes
 - properties decay only slowly through steps of the round
 - 4-round distinguisher, breaking full 6 rounds
 - lesson learnt: interpret trail bounds with caution
- How we fixed it:
 - increase number of rounds to 8
 - ask Lars as co-author and include attack in paper

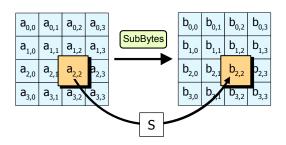
Lars' Square attack

The Square approach illustrated

The Square approach illustrated

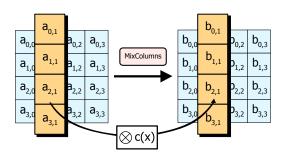
Winter 1996-1997: BKSQ

- Need for 96-bit block cipher for Lamport-like signatures
- Joan contacts Vincent again
- This resulted in SQUARE variant BKSQ [Cardis 1998]:
 - 12-byte blocks instead of 16-byte
 - MDS operating separately on 3-byte columns
 - dispersion: Transpose replaced by ShiftRows-like
 - linear recursive key schedule
- External evaluation by two independent parties:
 - both produced a report: no weaknesses found
 - but reports had concerns with linear key schedule
- Lessons learnt:
 - ShiftRows dispersion allows varying block size
 - linear key schedule raises eyebrows

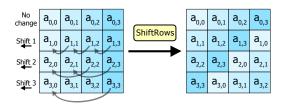

The start of the AES competition

- January 1997: NIST announces the AES initiative
 - replacement of DES
 - open call for block cipher proposals
 - ...and for analysis, comparisons, etc.
 - draft call requires several block and key lengths
- We had already most ingredients in SQUARE and BKSQ
- Remained to do:
 - specify a non-linear key schedule
 - prepare the documentation
 - prepare reference code
 - ...still more work than expected

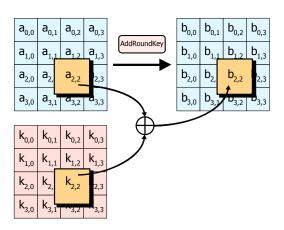
Rijndael


- Block cipher with block and key lengths $\in \{128, 160, 192, 224, 256\}$
- Simple round function with four steps
 - all rounds are identical
 - ...except for the round keys
 - parallel and symmetric
- Key schedule
 - expansion of cipher key to round key sequence
 - recursive procedure that can be done in-place

The non-linear layer: SubBytes


- Single S-box with two layers
- $y = x^{-1}$ in GF(2⁸), or more exactly $y = x^{254}$
 - \blacksquare max LP = max DP = 2^{-6} [Nyberg, Eurocrypt 1993]
- Affine mapping: multiplication by 8×8 matrix in GF(2)
 - to counter interpolation attacks [Jacobsen, Knudsen, FSE 1997]

The mixing layer: MixColumns


- Single MDS mapping applied to columns
- Multiplication by a 4×4 circulant matrix in $GF(2^8)$
 - Elements: 1, 1, x and x+1
 - circulant MDS matrix with the simplest elements
 - Inverse has more complex elements

The dispersion layer: ShiftRows

- Each row is shifted by a different amount
- Different shift offsets for higher block lengths

Round key addition: AddRoundKey

Key schedule: 192-bit key, 128-bit block example

$$k_0$$
 k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8 k_9 k_{10} k_{11} k_{12} k_{13} k_{14} k_{15} \cdots

Round key 0 Round key 1 Round key 2 ...

$$k_{6n} = k_{6n-6} \oplus f(k_{6n-1})$$

 $k_i = k_{i-6} \oplus k_{i-1}, i \neq 6n$

Rijndael: some distinguishing features

- Symmetric and (too) simple (to be secure)
- Inverse is different and slightly more expensive
- Table-lookup implementation:
 - 4 Kbytes of table
 - $lue{lue}$ 1 table-lookup + 1 XOR per byte per round
 - inverse uses different tables
- No integer arithmetic

└ The Rijndael book

The Rijndael book

- Springer approached us for writing a book on Rijndael
 - more work than expected
 - very learnful experience
- New insights on LC and DC of key-alternating ciphers
 - linking linear trails, correlations and linear probability (LP)
 - clear and clean expressions
- Rijndael-GF
 - GF(2⁸) only: matrix in GF(2) becomes *linearized polynomial*
 - linear cryptanalysis native in $GF(2^n)$

Conclusions

- Design process took years of elapsed time
- Ideas used from an even longer period
- But result seems to be tough: shape of AES 2019 AD:
 - theoretical security: small dents in armour
 - practical security: no threat
- ...and inspiring for both design (and attacks)
 - block ciphers and compression functions
 - stream ciphers
 - iterated permutations

Thanks for listening!