IMG_0418

“Intuitive Combinatorial Topology” von Boltyanski-Efremovich war seinerzeit das erste Topologie-Buch, das ich zu lesen versuchte, und die beeindruckendste “Anwendung” fand ich damals den topologischen Beweis, dass sich jeder beliebigen Kurve ein Quadrat umschreiben läßt. (s. den Schluß von TvF 11) Es ist eine offene Frage, ob man jeder Kurve auch ein Quadrat einbeschreiben kann. Immerhin…

IMG_0417

Letzte Woche ist ein Beweis (oder eher eine Beweisankündigung?) einer mehr als 60 Jahre alten Vermutung, die in den vergangenen Jahrzehnten von vielen Mathematikern erfolglos bearbeitet worden war, auf dem ArXiv erschienen. Das bemerkenswerte an dem neuen Beweis ist, dass er nur 6 Zeilen lang ist und nur Resultate benutzt, die eigentlich schon seit Jahrzehnten…

Das muss man wohl wirklich nicht mehr kommentieren:

IMG_0385

Sehr symmetrische Fraktale lassen sich mit Hilfe der hyperbolischen Geometrie konstruieren: man nimmt eine diskrete Gruppe von Isometrien des 3-dimensionalen hyperbolischen Raumes (eine “Kleinsche Gruppe”) und schaut sich den Orbit eines Punktes unter dieser Gruppenwirkung an. Den Rand des 3-dimensionalen hyperbolischen Raumes denkt man sich als 2-dimensionale Sphäre (oder als Ebene mit noch einem Punkt…

Heute hatten wir hier am Korea Institute for Advanced Study die Feier zum 20-jährigen Institutsjubiläum, wozu neben einer eher langweiligen Zeremonie mit Grußworten und Absingen der Nationalhymne auch ein Vortrag Geometry and Physics: Cross-Fertilization and Missed Opportunities (sowie noch ein Vortrag zur Stringtheorie) gehörte. Im Vortrag über “Cross-Fertilization and Missed Opportunities” ging es darum, wie…

image

Komplexe Dynamik befasst sich mit der Iteration einer Funktion auf der komplexen Zahlenebene. Zu einer Funktion f schaut man, wie sich eine komplexe Zahl z bei wiederholter Anwendung von f verhält: man betrachtet die Folge Ein einfaches Beispiel: . Zu einem Startwert z haben wir die Folge usw. Wenn man etwa z=2 einsetzt erhält man…

Seit kurzem auch auf YouTube: die im Januar gesendete Arte-Doku “Das Geheimnis der Mathematik”: Aufhänger ist die Frage: “Wohnt der Realität eine mathematische Natur inne oder existiert die Mathematik nur in unseren Köpfen?” Belege für die erste These sind dann Fibonacci-Zahlen in der Biologie; das Vorkommen von π in Problemen, die nichts mit Kreisen zu…

Zwei bemerkenswerte Karten der mathematischen Landschaft hat Cristobal Bravo auf Google+ veröffentlicht: Das bräuchte man jetzt noch “in Groß” für die Bürotür. Nachtrag: Die Originalquelle für das erste Bild ist https://web.math.pmf.unizg.hr/~bruckler/mm_eng.jpg

image

“Der längste Mathe-Beweis der Welt” nennt es Spiegel Online. 200 Terabyte lang ist die Berechnung, wieviele natürliche Zahlen sich mit zwei Farben (rot und blau) färben lassen ohne dass es ein einfarbiges pythagoräisches Zahlentripel gibt. (Ein pythagoräisches Zahlentripel ist eine ganzzahlige Lösung der Gleichung a2+b2=c2, zum Beispiel 32+42=52 oder 52+122=132. Wenn man also beispielsweise 3…

image

Im neuen SPIEGEL findet sich ein äußerst überschwänglich geschriebener Artikel zur (nicht ganz neuen) Datenbank LMFDB (L-functions and Modular Forms Database). Was sind L-Funktionen? Das einfachste Beispiel ist die Riemannsche ζ-Funktion, die für Re(s)>1 durch definiert und dann durch analytische Fortsetzung auf der restlichen komplexen Zahlenebene definiert wird. Riemann hatte sie in Zusammenhang mit der…