Algebraische Zahlen (reelle Zahlen, die Nullstelle eines Polynoms mit ganzzahligen Koeffizienten sind) bilden eine abzählbare Menge, die reellen Zahlen hingegen nach Cantor eine überabzählbare. Es müssen also die meisten reellen Zahlen transzendent (nicht algebraisch) sein. Trotzdem ist es sehr schwer, konkrete transzendente Zahlen zu konstruieren. Liouville bewies 1844, dass algebraische Zahlen schlecht durch rationale Zahlen…

Die Partitionsfunktion p(n) gibt die Anzahl der Möglichkeiten an, die natürliche Zahl n in eine Summe natürlicher Zahlen zu zerlegen. Sie ist von Bedeutung in der Kombinatorik und in der Darstellungstheorie der symmetrischen Gruppe und der allgemeinen linearen Gruppe. Für kleine n läßt sich p(n) leicht berechnen, zum Beispiel ist p(4)=5: die fünf Zerlegungen der…

Die Nützlichkeit topologischer Stetigkeitsargumente bei der Lösung geometrischer Probleme wird manchmal (zum Beispiel im sehr empfehlenswerten Buch von Boltjanskij-Efremowitsch) veranschaulicht mit dem Beweis, dass jede beliebige geschlossene Kurve durch ein Quadrat umschrieben werden kann: Zu jedem Winkel α findet man ein Rechteck, dessen erste Seite Neigungswinkel α hat und das die Kurve umschreibt. (Man nehme…

Man weiß seit dem 17. Jahrhundert, dass Energie und Impuls Erhaltungsgrößen sind. Im 18. Jahrhundert wurde mit dem Drehimpuls noch eine weitere Erhaltungsgröße gefunden. Seit Lagrange beschreibt man die Dynamik t—->q(t) mechanischer Systeme dadurch, dass für eine gewisse Lagrange-Funktion L – zum Beispiel L=Ekin-Epot für Systeme mit einem (verallgemeinerten) Potential und holonomen Zwangsbedingungen – das…

Der Abelpreis (mit gut 106$ der höchstdotierte Mathematikpreis) geht dieses Jahr an Hillel Furstenberg und Grigori Margulis für ihre Arbeiten zur Ergodentheorie.

Das 19. Jahrhundert war in der Mathematik das Jahrhundert der Funktionentheorie gewesen, vor allem der elliptischen Funktionen (Umkehrfunktionen elliptischer Integrale) und dann ihrer Verallgemeinerungen in mehreren Variablen, den abelschen Funktionen. Elliptische Funktionen sind doppelt-periodisch, also periodisch bezüglich eines Gitters L in C. Alle solchen Funktionen lassen sich als Polynom in der Weierstraßschen p-Funktion des jeweiligen…

War die Mengenlehre Georg Cantors zunächst durchaus umstritten gewesen, wurde sie seit Beginn des 20. Jahrhunderts nach und nach von immer mehr Leuten als unentbehrliche Grundlage für die Strukturierung der Mathematik angesehen. Das von Ernst Zermelo in „Untersuchungen über die Grundlage der Mengenlehre“ 1908 eingeführte Axiomensystem bewährte sich in der Praxis und wurde allgemein anerkannt,…

Die Kleinsche Flasche ist eine einseitige Fläche, sie hat kein Innen und Außen. Sie schließt also kein Volumen ein. Cliff Stoll argumentiert im neuen Numberphile-Video, dass man trotzdem das physikalische Volumen einer Kleinschen Flasche bestimmen könne: man müsse die Wirkung des Gravitationsfelds berücksichtigen. Bildquelle: https://commons.wikimedia.org/wiki/File:Science_Museum_London_1110529_nevit.jpg

„Seit die Mathematiker über die Relativitätstheorie hergefallen sind, verstehe ich sie selbst nicht mehr.“ soll Albert Einstein gesagt haben, nachdem Hermann Minkowski 1907 seine spezielle Relativitätstheorie in einen mathematischen Rahmen zu setzen gelungen war – als Anwendung der von Bernhard Riemann in seinem Habilitationsvortrag 1858 vorgeschlagenen durch ein punktweises Skalarprodukt auf einer Mannigfaltigkeit („Riemannsche Metrik“)…

Wenn man ein Möbiusband ein zweites Mal verdreht, bekommt man kein Möbiusband, sondern einen gewöhnlichen Kreiszylinder. Wenn man es ein drittes Mal verdreht, hat man aber wieder ein Möbiusband. Auch nach der 17. Verdrehung bekommt man wieder ein Möbiusband. Dasselbe kann man auch mit einer Kleinschen Flasche machen, wie Cliff Stoll im neuen Numberphile-Video zeigt: