Als die Raumsonde New Horizons am Pluto vorbeiflog, hat sie eine Reihe von präzisen Drehungen und Manövern durchführen müssen. Die Sonde musste jederzeit genau wissen, wo sie ist und in welcher Lage sie sich befindet. Sonst hätte sie kaum eine Chance gehabt, gezielt Bilder von Pluto oder seinen Monden zu machen. Gleichzeitig ist bei New Horizons auch die Antenne fest verbaut, die die Daten zur Erde zurücksendet. Wenn die Antenne nicht wieder auf die Erde ausgerichtet wird, können keine Daten zurückkommen und die Sonde ist verloren.

Um die Kosten und das Gewicht der Sonde niedrig zu halten, wurden außerdem alle Kameras fest verbaut. Also muss sich die ganze Sonde drehen, um die Kameras auszurichten. Zur Orientierung dienen dabei mehrere Systemen.

Die wichtigsten Instrumente sind zwei Sonnensensoren, die die Position der Sonne bestimmen. Auch wenn nichts anderes mehr funktioniert, kann sich die Sonde damit zumindest auf die Sonne ausrichten. Das reicht aber nicht, um stark gebündelte Signale mit der Hauptantenne direkt zur Erde zu funken. Dazu muss die Antenne auf 0,2 Grad genau ausgerichtet werden. Vom Pluto aus gesehen, kann die Erde bis zu 1,7 Grad von der Sonne entfernt sein. Es ist aber noch eine zweite Antenne auf der Hauptantenne montiert, die eine Halbwertsbreite von 10 Grad hat und auch dann noch Signale mit niedriger Bandbreite zur Erde funken und empfangen kann.

Das zweite System ist die Inertial Measurement Unit. Das sind Gyroskope, mit denen die Rotationsgeschwindigkeit der Sonde gemessen werden kann. Wissenschaftler benutzen dafür aber keine mechanischen Kreiselkompasse mehr, sondern optische Systeme, die mit dem Sagnac-Effekt funktionieren und ohne bewegliche Teile auskommen.

Dabei wird ein Laserstrahl geteilt und beide Teile auf eine ringförmige Bahn in entgegengesetzter Richtung geleitet, entweder durch eine Glasfaser oder mit Spiegeln. Am Ende werden beide wieder zusammengeführt. Die dunklen und hellen Bereiche der dabei entstehenden Interferenzmuster ändern sich je nach Rotationsgeschwindigkeit der Sonde.

Mit steigender Geschwindigkeit wechseln sich hell und dunkel immer wieder ab. Man muss es also wenigstens einmal kalibrieren, wenn die genaue Rotationsgeschwindigkeit der Sonde bekannt ist. Dazu kommt noch eine Reihe von Beschleunigungsmessern, die auch für die Rotationsmessung eingesetzt werden können.

Schließlich gibt es auch noch einen Star Tracker, also eine einfache Kamera, die Bilder vom Sternenhimmel macht und auswertet. Damit kann die Sonde ihre Ausrichtung relativ zu den Sternen der Milchstraße und ihre Rotationsgeschwindigkeit bestimmen, wenn sie sich nicht zu schnell dreht.

Als bei der Sonde DeepSpace-1 der Star Tracker ausfiel, nutzte man stattdessen die Hauptkamera. Die hatte natürlich eine viel höhere Vergrößerung und ein kleineres Sichtfeld, was es dem Bordcomputer entsprechend schwieriger machte, die Bilder der Kamera bekannten Sternkonstellationen zuzuordnen.

Zuletzt muss die Sonde noch wissen, wo genau im Sonnensystem sie sich befindet und wo sie hinfliegt. Das könnte man grob durch Positionsbestimmung von Planeten tun, aber das ist nicht im Ansatz genau genug. Hier hilft die Kommunikation mit der Erde.

Von hier kann man die Entfernung zur Sonde durch die Laufzeit der Radiosignale genau bestimmen. Umgekehrt gilt natürlich das gleiche. Außerdem führt jede Bewegung der Sonde zur Erde hin oder von der Erde weg zu einem Dopplereffekt, mit dem man die Geschwindigkeit dieser Bewegung messen kann. Dazu muss man aber sehr genau wissen, mit welcher Frequenz die Sonde sendet und entsprechend viel Wert wird auf die Qualität der Transmitter gelegt.

Die Genauigkeit die man damit erreicht ist erstaunlich. Man kann die Entfernung der Raumsonde zur Antenne auf der Erde auf drei Meter genau bestimmen und die Geschwindigkeit auf 0,05mm/s.

Zuletzt muss man noch möglichst genau die (scheinbare) Stelle am Himmel kennen, von der die Sonde ihre Radiosignale abschickt. Da ist die Bodenstation auf der Erde im Vorteil. Hier kann man viel größeren Aufwand betreiben. Man hat nicht nur die größeren Antennen, man hat auch mehrere davon in großem Abstand zueinander.

1 / 2 / Auf einer Seite lesen