Stille Mutationen sind lauter als gedacht
Die Vorstellung von Müll-DNA ist nicht der einzige Irrglaube, dem wir bei der Entschlüsselung des Genoms bisher verfallen sind. Schauen wir uns jetzt mal die Gene an, die wirklich in Proteine übersetzt werden. Dafür werden jeweils drei Nukleotide der RNA (ein sogenanntes Codon) in eine Aminosäure übersetzt. Das Wörterbuch “RNA —> Protein” bezeichnet man als genetischen Code. Von den 43 = 64 möglichen Codons, werden 61 in 20 unterschiedliche Aminosäuren übersetzt; die restlichen drei sind sogenannte Stopcodons, die die Herstellung des Proteins beenden. 61 mögliche Codons und nur 20 Aminosäuren? Ja, es gibt nämlich unterschiedliche Codons, die in die gleiche Aminosäure übersetzt werden. Synonyme könnte man sagen, Wörter mit der selben Bedeutung. Oft unterscheiden sich die Codons für eine Aminosäure nur im letzten Buchstaben. Zum Beispiel wird sowohl CCU, CCG, CCA und CCC in die Aminosäure Prolin übersetzt.
Was bedeutet diese Redundanz im genetischen Code? Wenn zum Beispiel im Prolin Codon an der dritten Stelle eine Mutation auftritt, und ein Nukleotid durch ein anderes ersetzt wird, dann hat das keine Auswirkung — es kommt wieder Prolin dabei heraus. Man spricht von einer stillen Mutation. Wenn solche Mutationen keine Auswirkungen haben, dann sollten die synonymen Codons auch keinem Selektionsdruck unterliegen und somit überall gleichverteilt vorkommen. Also in allen Lebewesen sollten von allen Prolin Codons ungefähr ein Viertel CCU sein, ein Viertel CCG und so weiter. Genau das tun sie aber nicht. Die Verteilung der synonymen Codons ist völlig unregelmäßig. Und dazu noch unterschiedlich zwischen verschiedenen Lebewesen, aber auch innerhalb einzelner Gene.
Die Gründe dafür fängt man erst langsam an zu verstehen. Zum Beispiel spielt die Verteilung eine Rolle dafür, wie schnell ein Protein hergestellt werden kann. Kommt innerhalb eines Gens immer das gleiche Codon für eine bestimmte Aminosäure vor, lässt sich das Protein schneller herstellen. Durch ein eher untypisches Codon lässt sich wiederum eine Pause in der Herstellung des Proteins erzwingen, die eventuell nötig ist, damit sich das Protein richtig faltet. Zwei Proteine, die man gemeinsam für eine bestimmte Aufgabe im Körper benötigt, haben häufig eine ähnliche Verteilung der Codons. Man entdeckt immer mehr regulatorische Prozesse, in denen die Verteilung dieser Codons eine Rolle spielt. Die “stille Mutation” ist also nicht ganz so still, wie man anfangs dachte. Auch hier passt die Analogie zur Sprache wieder schön: synonyme Codons sind Wörter, die auf den ersten Blick das gleiche bedeuten, sich im Subtext aber vielleicht doch unterscheiden.
Das sind nur zwei Beispiele für Irrglauben, die uns zeigen, dass wir unser Wissen immer auch anzweifeln sollten und wir noch viel zu lernen haben. In Bezug auf CRISPR/Cas kann ich eigentlich nur mein Fazit aus dem letzten Beitrag wiederholen: Man sollte bei dieser Technologie vielleicht nicht als erstes daran denken, in unserem Erbgut herumzuschustern und in die menschliche Keimbahn einzugreifen. Stattdessen sollten wir es als Chance wahrnehmen, die Sprache unserer Gene besser verstehen zu lernen.
Kommentare (15)