Gestern habe ich ein Gespräch zum Thema “Durchschnitt” aufgeschnappt:
Es unterhielten sich einige Herren darüber, dass im Oktober ja so viele Geburtstag hätten … und im Mai … eigentlich auch so im Januar… Einige Zeit später kam noch einer dazu und sagte:
“Ja, dabei hat der Durchschnittsdeutsche doch im Juni Geburtstag!”
Ich möchte jetzt keine Begriffsdiskussion über Häufung, Durchschnitt oder andere statistische Begriffe lostreten, schauen wir einfach, was beim statistische Bundesamt dazu zu finden ist.
Im Jahre 2012 stellte die Behörde eine Broschüre mit dem Namen Geburten in Deutschland vor, in der passende Informationen nachzulesen sind: eine Tabelle mit Geburtszahlen für einige Jahre aufgeschlüsselt nach Monaten. Ich habe als Beispiel die Zahlen für 1990 abgetippt und folgende Verteilung erhalten:
Es gibt, wie man sieht, keinen einzelnen Monat, der besonders heraus sticht. Der Zeitraum Juli bis September ist zwar etwas erhöht, aber auch nicht unbedingt auffällig. Bei den geringen Effekten, wenn auch erkennbar, gibt es also keinen Monat, an den man einen allgemeinen Durchschnittsgeburtstag anhängen könnte.
Dennoch bleibt das Thema interessant, wenn man eine weitere Information aus der Veröffentlichung hinzunimmt: “Die Geburten bilden innerhalb des Jahres eine relativ stabile Saisonfigur” (S. 16). Das ist wirklich sehr spannend, denn es zeigt, dass der Anstieg zwar nicht sehr hoch ist, sich aber nachweisbar wiederholt.
Diese Saisonfigur ist offenbar einmal gewandert, wie ein weiterer Satz bestätigt:
“Diese Saisonfigur mit den meisten Geburten in den Monaten Juli bis September kann deutschlandweit beobachtet werden. Sie bildete sich allerdings erst seit Anfang der 1980er Jahre heraus. Vor dem Zweiten Weltkrieg und auch noch Jahrzehnte später lag das Maximum der Geburten in den Monaten Februar und März.” (S. 16f)
Für die bildliche Darstellung habe ich das entsprechende Diagramm heraus kopiert: die Geburtenzahlen pro Tag wurden berechnet, auf einen Jahresdurchschnitt von 1000 Geburten pro Tag normiert, über mehrere Jahre gemittelt und die Skala entsprechend aufgespannt, um die Schwankungen zu verdeutlichen. (Wilde Mutmaßungen und 9-Monatszurückrechnereien unterlasse ich an dieser Stelle.)
Auch wenn der Effekt nicht so groß ist, als dass er im Alltag irgendeine Bedeutung hätte,
hat es mich dennoch überrascht, dass es eine über viele Jahre stabile Saisonfigur gibt,
die zwar klein, aber dennoch erkennbar ist. Ich werde versuchen, mehr Daten aufzutreiben…
Kommentare (15)