Diese Grafiken wurde von Marcel Müller an der Uni Bielefeld erstellt, der so etwas generell unter CC-BY-SA lizensiert. Nicht nur das möchte ich gerne erwähnt haben, sondern auch die Arbeit die Marcel in das Softwarepaket fairSIM gesteckt hat. Das ist ein offenes ImageJ Plug-In für SIM (Über ImageJ gibt es mehr bei Basteln ist auch Wissenschaft). Das ist deswegen so etwas Besonderes und Erwähnenswertes, weil es bisher so gut wie nur kommerzielle SIM-Software gegeben hat, von Mikroskopieherstellern die sich bei der Berechnung der Bilder nicht in die Karten schauen lassen wollten. Bei fairSIM kann man sich jede Zeile Programmcode anschauen, aber nicht nur das: fairSIM ist auch noch deutlich schneller als die meisten kommerziellen Programme und zur Zeit arbeiten die Forscher an der Uni Bielefeld an einer Variante die auf Grafikkarten noch ein Stück schneller rechnen können wird. So schnell, dass man höchstens einen Augenaufschlag auf das hochaufgelöste Bild warten muss, und so live seine Probe in SIM-Auflösung betrachten kann. Das ist eine Neuerung, die jeden Biologen begeistern wird und etwas, dass keine kommerzieller Hersteller anbietet. Yeah – open science!
Ich sprach darüber auch in meinem Vortrag auf dem 33. Chaos Communication Congress (33c3). Noch mehr Links zu SIM, Beispiele und den Vortrag selbst gibt es hier.
Stärken / Schwächen
Bei SIM ist eine recht aufwändige Nachbearbeitung der Messdaten durch einen Computer nötig. Dabei wird eine Auflösung von 100nm in der Ebene und 250nm in z-Richtung erreicht. Der große Vorteil ist hier, dass eigentlich alle gängigen Fluoreszenzfarbstoffe für die Technik geeignet sind, und es keinen Unterschied zu einer normalen Probenpräparation gibt.
Ein anderes Beispiel für eine mathematische Überlistung ist Super-resolution optical fluctuating imaging (SOFI).
Physikalische Überlistung
Man kann sich auch das Problem der Beugungsgrenze zu einem gewissen Grad ersparen, wenn man die beleuchtete Fläche kleiner macht. Zwar sind auch fokussierte Laser beugungsbegrenzt, können also das Kriterium „halbe Wellenlänge“ nicht unterschreiten, aber da geht es dann schon los mit der physikalischen Trickserei. Das wohl bekannteste Beispiel dafür wäre STED, Stimulated Emissioen Depletion oder, auf Deutsch stimulierte Emissionsverarmung. Dafür bekam Stefan Hell den Nobelpreis in Chemie 2014.
Dem STED-Ansatz zu Grunde liegt ein konfokales Mikroskop. Dabei wird ein Laser auf einen kleinen (beugungsbegrenzten) Punkt in der Probe foussiert, die Farbstoffe in diesem Punkt werde angeregt und die Fluoreszenz gemessen. Dann wird der Punkt ein kleines Stückchen in der Probe weiter bewegt. So kann man, Punkt für Punkt, Zeile für Zeile ein Bild einer Probe machen, und das geht auch schneller als es sich anhört. Oft braucht man für einen solchen Punkt in einem konfokalen Mikroskop höchstens ein paar Millisekunden Messzeit. Die Trickserei von STED ist jetzt, dass der Messpunkt effektiv kleiner gemacht wird. STED benutzt dafür einen zweiten Laser – der erste Laser den es beim konfokalen Mikroskop gibt ist ja weiterhin beugungsbegrenzt. Der zweite, auch sogenannte STED-Laser wird durch eine Phasenplatte wie ein kleiner Donut geformt, in dessen Mitte der erste Laser liegt.
By Marcel Lauterbach – Own work (Original text: Selbst erstellt), CC BY-SA 3.0, Link
Der STED-Laser liegt mit seiner Wellenlänge im gleichen spektralen Bereich, in dem das ausgesendete Licht des benutzten Farbstoffs liegt. Das führt dazu, dass sich angeregte Elektronen in den Farbstoffen denken „Hey, da leuchtet jemand, das wollen wir auch!“ und ihre Energie in Form von Licht der selben Wellenlänge des STED-Laser abgeben. Das nennt man stimulierte Emission. Mit dem STED-Laser räumt man alle angeregten Farbstoffe um das Zentrum dieses Donuts sofort wieder ab. Wenn man jetzt die Leistung des zweiten Laser erhöht, wird das Loch in der Mitte kleiner, und kann auch kleiner als die Beugungsgrenze werden. Deswegen habe ich oben von „effektiv kleiner“ gesprochen. So wird der Punkt, von dem man noch ein effektives Fluoreszenzsignal bekommt kleiner – und die Auflösung besser.
Stärken / Schwächen
Die erreichte Auflösung von STED liegt im Bereich von 50nm in der Ebene und mit mehr Trickserei bei 120nm in z-Richtung. Die Leistungsdichte durch die beiden Laser auf der Probe sind sehr hoch, wenn auch nur für kurze Zeit. Dies kann zum Bleichen der Farbstoffe und zur Beschädigung der biologischen Struktur selbst führen. Im Vergleich zu allen anderen Techniken ist das hochaufgelöste Bild direkt nach der Messung zu sehen, und keine Nachbearbeitung irgendwelcher Rohdaten im Computer ist nötig.
Ein anderes Beispiel für eine physikalische Überlistung ist das optische Rasternahfeldmikroskop (NSOM).
Kommentare (11)