Wer noch meinen Artikel “Angriff der Miniraketen” im Hinterkopf hat erinnert sich vielleicht an diese Rakete. Da wir nun die auch etwas mehr über Raketentriebwerke wissen, lohnt sich ein zweiter Blick.

Das besondere an der Electron sind die “Rutherford” Triebwerke. Wie viele Raketentriebwerke, werden auch diese mit Kerosin und flüssigem Sauerstoff angetrieben. Das funktioniert noch ganz klassisch. Aber das Problem ist ja immer, das Zeug in das Triebwerk hinein zu pumpen und das macht man hier zum ersten mal mit elektrischen Pumpen. (Das hier ist die zweite Stufe. Die Batterien sind schätzungsweise die grauen Kästen.) Die Idee ist nicht wirklich neu und wurde auch schon wissenschaftlich untersucht.

second-stage

 

Der erste Gedanke ist eigentlich, dass das nicht gehen sollte. Nach allem was man über die Elektrofahrzeuge gehört hat, kommen Batterien niemals an die Energiedichte von Benzin oder Kerosin heran. Und das stimmt auch. Aber bei einem Raketentriebwerk wird die Sache komplizierter. Anders als ein Auto, muss die Rakete ihren eigenen Sauerstoff mit schleppen. Das ist schon sehr viel Masse. Das Atomgewicht von Sauerstoff beträgt 16, Kohlenstoff wiegt 12 und Wasserstoff 1.

Der Kohlenstoff verbrennt zusammen mit zwei Sauerstoffatomen zu CO₂. Zu einem Kohlenstoffatom mit Gewicht 12, kommen zwei Sauerstoffatome mit Gewicht 16 hinzu. Der Sauerstoff wiegt also fast 3 mal so viel wie der Kohlenstoffanteil des Kerosins. Normalerweise bekommen wir davon nichts mit, denn der Sauerstoff kommt nicht aus dem Tank, sondern aus der Luft. Beim Wasserstoff ist es noch schlimmer. Das Sauerstoffatom in H₂O wiegt 8 mal so viel wie die beiden Wasserstoffatome.

Kerosin besteht nun im wesentlichen aus Kohlenwasserstoffketten, in denen sich Gruppen von einem Kohlenstoffatom und zwei Wasserstoffatomen aneinander reihen. Jede dieser Gruppen hat ein Atomgewicht von 14 und braucht drei Sauerstoffatome mit einem Gewicht von 48 um verbrannt zu werden. Das Gewicht wird mehr als vervierfacht. Das allein reicht aber nicht im Ansatz, um dem mit einer Batterie konkurrenz zu machen. Wenn im Hauptstromverfahren der gesamte Treibstoff benutzt wird und auch die Abwärme noch durch die Brennkammer hindurch kommt, hat die elektrische Pumpe keine Chance.

Aber dieses Verfahren ist aufwändig und führt zu komplexen Triebwerken. Wenn es einfach, klein und billig sein soll, braucht man etwas anderes und meistens ist das ein Gas-Generatorzyklus im Nebenstromverfahren.

Wir erinnern uns: Das Problem ist, dass die Turbine niemals die Temperaturen aushalten würde, wenn man Kerosin und Sauerstoff in der optimalen Mischung verbrennt. Man muss zusätzlich Kerosin einspritzen, damit die Temperaturen niedrig bleiben. Der Unterschied beim Nebenstromverfahren ist, dass das Abgas mit dem zusätzlichen Kerosin durch den Auspuff nach draußen geht, ohne nennenswert Schub zu erzeugen. Das typische Mischverhältnis für so einen Gasgenerator liegt unter 0,5. Das heißt, dass halb so viel Sauerstoff wie Kerosin verwendet wird. Dabei müsste es für die optimale Energieausbeute eigentlich bei 3,4 liegen. Schon sinkt die Energiedichte des Treibstoffs auf etwa ein Achtel des üblichen Wertes.

Dazu kommt noch, dass die Turbine bestenfalls die Hälfte der Energie auch in Arbeit umwandelt, der Elektromotor hingegen fast alles. Und wenn man das alles zusammen nimmt, dann haben die neuesten Batterien gegen die ineffizientesten Turbopumpen geradeso eine Chance. Und die gibt man ihr gerne, denn im Vergleich zu anderen Triebwerken wird mit Elektropumpen (der grüne und der rote Zylinder) alles sehr viel einfacher.

rutherford

Das Ergebnis ist ein elegantes, kleines Triebwerk, mit sehr gutem spezifischem Impuls und miserablem Schub/Gewichtsverhältnis. Normalerweise liegt dieses Verhältnis bei Werten von etwa 1:80 bis 1:150. Das kleine Rutherford Triebwerk mit 1,8 Tonnen Schub dürfte also nur etwa 12-24 kg wiegen. Tatsächlich habe ich noch keine Gewichtsangabe gefunden.

Aber die Leute im Nasaspaceflight-Forum haben einiges zusammengetragen, mit dem man zumindest ein paar Schätzungen anstellen kann. Eine Batterie die 3 Minuten lang 80kW leistet, braucht eine Kapazität von 4kWh. Wenn man der Wikipedia glauben darf, wiegen Lithium-Polymer Batterien (die hier verwendet werden) allein wenigstens 16kg um diese Kapazität zu erreichen. Dazu kommt noch das Gewicht für eine robuste Verpackung und dem ganzen Rest des Triebwerks. Insgesamt dürfte das Triebwerk etwas mehr als 30kg wiegen, bei einem Verhältnis von 1:50 bis 1:60.  Das gilt aber nur für die neun Triebwerke der ersten Stufe.

Das Triebwerk der zweiten Stufe muss etwa doppelt so lang arbeiten und dürfte eine etwa 40kg schwere Batterien mit sich tragen. Dazu kommt noch die viel größere Düse, die im Vakuum für mehr Schub sorgt (2,2 Tonnen), aber eben auch mehr wiegt.

Zusätzliches Gewicht ist in der obersten Stufe besonders ärgerlich. Denn jedes Kilo zusätzliche Masse in der letzten Stufe, ist ein Kilo weniger Nutzlast. Dazu kommt, dass die zweite Stufe noch Masse für ein zusätzliches kleines Steuertriebwerk braucht. Ein Triebwerk allein kann zwar die Lage der Rakete im Raum beliebig ändern, kann aber die Rakete nicht um die eigene Achse drehen. Dafür braucht es zumindest noch ein weiteres bewegliches Triebwerk oder zwei starre Düsen. Dem Bild nach zu urteilen, kommt dafür eine einfache Kaltgasdüse zum Einsatz.

Nun liegt die Nutzlast nur noch bei etwa 100kg in dem angestrebten, Sonnensynchronen Orbit und man schleppt ein über 50kg schweres Triebwerk mit. Ideal ist das alles nicht, aber für eine Rakete in dieser Größe im Prinzip gar nicht schlecht. Mit der weiteren Entwicklung der Batterietechnik könnte die Rakete auch ganz ohne Verbesserungen des Triebwerks an sich eine größere Nutzlast bekommen.

Falls die Electron erfolgreich ist, ist es durchaus möglich, dass noch ganz andere Hersteller auf diese Technik zurückgreifen werden.

Kommentare (7)

  1. #1 cleric
    Tübingen
    14. Mai 2015

    Hi,

    Wie funktioniert denn die Rakete? Wird durch den Strom nur ein Gas erhitzt und dann wie bei einer normalen Rakete nach unten rausgelassen? Welches Gas wird dann verwendet zum Abstoßen?

    Du hast übrigens einen super interessanten Blog geschaffen. Ist trotz seines jungen Alters schon zu meinem Lieblings-Blog geworden :)

    • #2 wasgeht
      14. Mai 2015

      Nein. Der Strom treibt die “Benzinpumpe” an. Der Treibstoff wird dann ganz normal in der Brennkammer verbrannt.

      Lies dir mal “Was geht mit Raketentriebwerken” durch.

  2. #3 hsg
    14. Mai 2015

    Und was ist mit den Temperaturen in den Triebwerken? Müssen die Batterien nicht besonders vor der Kälte geschützt werden oder ist das in dem angegeben Gewicht bereits berücksichtigt?

    • #4 wasgeht
      14. Mai 2015

      Wenn ich mit der Vermutung recht habe, dass die batterien in den grauen Kästen sind, dann sind sie geschützt. Ganz abgesehen davon sind Batterien auch nicht 100% Effizient und die Verluste werden zu Wärme.

      Schlimmstenfalls kann man immer das Kerosin aus dem Tank benutzen um die Temperaturen konstant zu halten.

  3. #5 Julian
    14. Mai 2015

    Wären da in Zukunft nicht Magnesium Akkus (an denen meines Wissens gerade geforscht wird) der Schlüssel zum kleineren Gewicht? Oder müssen diese stärker verkleidet sein? (Ich hab keinen Plan

    • #6 wasgeht
      14. Mai 2015

      Bei Batterien warte ich immer, bis sie auf dem Markt sind. Irgendwo hatte ich mal einen Artikel von 1905 rumfliegen, der sagte, dass man in 10 Jahre die 10fache Batteriekapazität haben würde. 110 Jahre später, ist man immernoch nicht da.

  4. […] Auch hier soll wieder eine Rakete, mit einem Gewicht von 3800kg, von einem Flugzeug aus gestartet werden. Die erste Stufe ist eine Feststoffrakete von Aerojet Rocketdyne. Leicht verklausuliert sagt GO, dass es sich dabei um eine erprobte militärische Rakete ohne Gefechtskopf handelt. Die zweite Stufe wird durch Kerosin und Sauerstoff angetrieben, und auch hier kommt wohl eine elektrische Pumpe zum Einsatz, genauso wie bei der Electron, über die ich schon vor einem Monat schrieb. […]