Bessere Leistungen mit alter Hardware

Nicht nur die Hardware, sondern eine weitere Entdeckung an einem Tokamak-Projekt hat zu Verbesserungen in der Leistung der Reaktoren geführt. Am 4. Februar 1982 entdeckte der deutsche Physiker Fritz Wagner am deutschen Tokamak-Experiment Asdex die H-Mode, eine Plasmakonfiguration, bei der nur noch halb so viel Energie aus dem Plasma verloren geht wie sonst. Damit wurden in kleineren Tokamaks Plasmaentladungen demonstriert, die bei einem Reaktor wie Iter den angestrebten Q-Faktor 10 erreichen würden.

Diese H-Mode haben die Forscher mit den vorhandenen Messinstrumenten immer noch nicht vollständig theoretisch verstanden. Zurzeit ist sie “nur” eine empirische Tatsache, die sich in jedem Tokamak und auch in jedem Stellerator erzeugen lässt, der ausreichend Heizleistung bereitstellt und einen Divertor hat. Durch den Divertor und starke Vakuumpumpen wird Gas aus dem Plasma abgezogen und immer wieder im Tokamak recycelt. Im Laufe der vergangenen 34 Jahre hat sich auch die Erfahrung im Umgang mit der H-Mode verbessert. Dazu gehört auch der Umgang mit Elms (Edge Localized Modes).

Elms – nützlich bis zerstörerisch

Elms sind Ausbrüche von energiereichen Teilchen aus dem schwebenden Plasma, die im Zusammenhang mit der H-Mode auftreten. Zu starke Elms würden im Laufe der Zeit Material von der Reaktorwand abtragen und zu einem ernsthaften Haltbarkeitsproblem führen. Deswegen wird versucht, sie möglichst abzuschwächen, ohne sie ganz zu verhindern.

Denn Elms sorgen auch dafür, dass schwere Ionen aus dem Plasma getragen werden und es sauber halten. Das ist nötig, denn wenn Elektronen gegen schwere Ionen prallen, entsteht Röntgenstrahlung, durch die Energie aus dem Plasma verloren geht. Da der Einschluss des Plasmas nie perfekt ist, prallen immer wieder Atome gegen die Reaktorwand und schlagen einzelne Wolfram-Atome heraus, die dann das Plasma verunreinigen können, wenn sie nicht entfernt werden.

Dauerhafter Betrieb auch im Tokamak

Bisher ungelöst ist die Frage, wie das Plasma über längere Zeit stabil gehalten werden kann. Eins der Probleme des Tokamaks ist der ringförmige Strom, der durch den Torus getrieben wird. Anfänglich wurde er durch einen Transformatoreffekt erzeugt. Damit kann aber kein dauerhafter Strom in einer Richtung erzeugt werden. Deswegen konnte das Plasma zunächst bestenfalls für einige Sekunden stabilisiert werden.

Durch andere Techniken wie den Einschuss von Teilchen in den Torus von außen können Plasmaentladungen in Tokamaks mittlerweile immerhin für mehrere Minuten stabil gehalten werden. In Frankreich konnte der Tore Supra Tokamak Entladungen mit über 4 Minuten Dauer erreichen und vor kurzem erreichte auch der chinesische “EAST” eine Entladung von knapp 2 Minuten.

Ein anderer Ansatz zur Lösung dieses Problems ist der Stellerator, der durch die komplizierte Form seiner Magnetfeldspulen keinen induzierten Strom für ein stabiles Plasma nötig hat und es dauerhaft stabil halten kann. Für den praktischen Nachweis wurde zuletzt das Plasmaexperiment Wendelstein 7-X gebaut. Das ist auch nötig, denn die Praxis ist heute der wesentliche Flaschenhals in der Entwicklung.

1 / 2 / 3 / 4 / 5 / 6 / 7

Kommentare (8)

  1. #1 Rüdiger Kladt
    26. Februar 2016

    Ich bin schon lange der Meinung, dass wir solche Projekte auch alleine durchführen sollten, da es auf europäischer Ebene zu große Verzögerungen gibt, die nur Wettbewerbern nutzen. Prominentes Beispiel ist hierfür Galileo. Im europäischen Hickhack um Jahrzehnte verschleppt, wurden gleichzeitig mit GPS Milliarden verdient und sichert Arbeitsplätze und Technologieführerschaft. Woanders!

  2. #2 MisterX
    26. Februar 2016

    Hallo, danke für diesen ausführlichen Artikel, eine Seltenheit bei den scienceblogs !

    Trotzdem finde ich das man sich in zeiten des Klimawandels lieber wieder auf die Verbesserung von Kernspaltung zurückbesinnen sollte. Nur diese sind immoment CO2 neutral und versorgen heute schon große Städte mit Energie. Das Problem ist immer noch die Nutzung von Uran, die sehr gefährlich sein kann, die überwiegende Nutzung heutzutage hat damit zu tun das man früher damit günstig Atomuboote betreiben konnte sowie Material für Atombomben hatte . Es gibt aber schon Konzepte wie die Flüssigsalzreaktoren die mit Thorium laufen und man die Zerfallszeit von den Abfällen auf bis zu 300 jahre reduzieren kann, ein sehr überschaubarer Zeitraum. Zusätzlich kann man den Atommüll der Uran betriebenen Rektoren als Brennstoff benutzen und in Brutreaktoren nochmal die Zerfallszeit verkürzen. Bis es eine kommerzielle Kernfusion gibt wird es noch ewig dauern und das ist unvereinbar mit den gefahren des Klimawandels die man heute schon beobachtet. Und bis zu einer Entwicklung dieser alternativen Reaktoren von den etablierten Konzernen kann man genau so ewig warten so lange diese mit den Uranreaktoren so viel Geld verdienen, darum ist es besser wenn man Flüssigsalzreaktoren in staatlichen Labors entwickelt die mit Steuerzahlergeld finanziert werden. Jetzt zu versuchen ein komplett neues Konzept wie Kernfusion weiter zu entwickeln ist IMO gefährlich und auch nicht wirklich vielversprechend.

  3. #3 Alderamin
    26. Februar 2016

    @MisterX

    Trotzdem finde ich das man sich in zeiten des Klimawandels lieber wieder auf die Verbesserung von Kernspaltung zurückbesinnen sollte. […] Bis es eine kommerzielle Kernfusion gibt wird es noch ewig dauern und das ist unvereinbar mit den gefahren des Klimawandels die man heute schon beobachtet.

    Es wird in der Tat ewig dauern, wenn kein Geld für die Kernfusion ausgegeben wird, deswegen macht eine Fokussierung auf Fissionskraftwerke keinen Sinn, im Gegenteil. Würde da ähnlich investiert werden wie in die Spaltung oder regenerative Energie, dann hätten wir möglicherweise schon kommerzielle Kernfusion.

    Außerdem wird der Klimwandel die Menschheit noch eine Weile beschäftigen. In der Zeit sind dann auch Fusionskraftwerke längst alltagstauglich.

  4. #4 MisterX
    29. Februar 2016

    @Alderamin: Das ist Quatsch. Es laufen heute schon sehr erfolgreiche Versuche zu Flüssigsalzreaktoren, wenn man sich auf diese konzentrieren würde wäre die Technologie in weniger als 10 Jahren tauglich für kommerzielle Dienste. Die getesteten Versuche haben sogar schon bessere Daten geliefert als vorhergesagt, findet man bei den Wikipedia Artikeln darüber. Geld in Kernfusion zu investieren macht keinen Sinn wenn man die Technologie die das gleiche und besser liefert (Flüssigsalzreaktoren können auch als Brutreaktoren benutzt werden und somit kann der Abfall der Urankraftwerke als Energiequelle benutzt werden, zeig mir mal Fusionskraftwerke die das können) schon sehr lange machbar existiert, und nur an der Geldgier der Energiekonzerne scheitert. Die typischen erneuerbaren Energien wie Wind und Solar können unmöglich großflächig Energie liefern, außer man plastert den Planeten mit den dingern zu. Über den Klimawandel gibt es Arbeiten bei denen die Wissenschaftler sagen das die Vohersagen viel zu opimistisch sind, von daher umso früher man anfängt was zu tun umso besser.

  5. #6 mustanse
    DE
    1. März 2016

    Ein schöner Artikel mit einem sinn-, grundlosen und deplazierten Seitenhieb auf das Erneuerbare-Energien-Gesetz. Die ohne Zweifel notwendige und sinnvolle Fusionsforschung ist tatsächlich sehr kostenintensiv. Demgegenüber steht der Gewinn an Wissen und technischen Lösungen in vielen Gebieten, die faszinierenden Versuchsanlagen sind nun mal im Grenzbereich des technisch Möglichen.
    Mit dem EEG stemmen wir aber jetzt die Kosten für die Markteinführung der EEs und die Ablösung der fossilen Erzeugung. Der Vergleich dazu wären die Kosten für Bau und Betrieb von x Fusionskraftwerken ab 2040/50/60. Wieviel el. Energie ist aus 500MW Heizleistung zu erwarten?
    Das Rennen um die kommerzielle Erzeugung von elektrischem Strom ist aber zugunsten der EEs entschieden. Das zeigt sich leicht am Vergleich der Kosten für neue, kommerzielle Anlagen – vgl. dazu die versprochene Einspeisevergütung für Hinkey Point C, wo es um einen (angeblich) fertig entwickelten Reaktortyp geht.
    Trotzdem hoffe ich, dass die Fusionsforschung auf hohem Niveau weiterbetrieben wird, ein kommerzielles Fusionskraftwerk ist aber imho nicht mehr zu erwarten.

  6. #7 Nordlicht_70
    1. März 2016

    In einem populärwissenschaftlichen Jugendbuch (vermutlich Ende der 70er Jahre) wurde die Schwierigkeit, das heiße Plasma in einem “Gefäß” zu halten, schön bildhaft beschrieben.
    “…., das ist so, als wenn die Pysiker versuchen würden, Wasser in einem Topf aus Eis zu kochen.”
    (Zitat aus dem Gedächtnis.)

  7. #8 fherb
    10. März 2016

    Wenn man sich das “Rauschen” der tatsächlichen Steuereinnahmen von Deutschland um die Vorhersagen und tatsächlichen Einnahmen an sieht (mehrere milliarden Euro), und sich klar macht, welchen Anteil von Fussionskraftwerken für die gesamte Zukunft am Bruttosozialprodukt ausgehen könnte… dann fragt man sich, warum hier um jede Million gefeilscht wird. Im Vergleich zu China könnte es sich Europa locker leisten 20 Milliarden Euro pro Jahr in diese Forschung zu stecken. Da Energie ein Grundrohstoff für sämtliche Wirtschaftszweige darstellt, ist der nutzbringende Gewinn jedes Euros an Investition in die Fusionskraftwerkstechnik unermesslich. – Da aber die Wirkungszeit von Politikern an den entsprechenden Schaltstellen immer noch unter der voraussichtlichen Zeit bis zum wirtschaftlichen Erfolg ist, bleibt hier jegliche Fokussierung aus. In dieser Beziehung sind Kapitalismus und Demokratie nicht das Optimum für das Überleben der Menschheit. :-/