Hier geht’s zu Teil 1
Hier geht’s zu Teil 2
Small Modular Reactors(SMR) – zu deutsch Kleine Reaktormodule sind eine Idee, die Kernenergie dadurch zu revolutionieren, dass Kernreaktoren in großen Stückzahlen fabrikmäßig gefertigt werden. In Teil 1 wurden das Konzept und die Vorteile, die man sich davon erhofft vorgestellt. Diesen Artikel hatte ich mit der Aussage geschlossen, nicht überzeugt von den kleinen Reaktormodulen zu sein und in Teil 2 erzählt, warum. In diesem Teil möchte ich auf ein paar Kommentare eingehen, die vielleicht ganz interessant sind. Spät, zugegebenermaßen, aber besser spät als nie.
1) Wie wird dafür gesorgt, dass nach Ende der Betriebszeit das Gelände in den Ursprungszustand zurück versetzt wird, ohne eine auf Jahrtausende strahlende Ruine?
2) Wie verläuft die Entsorgung der verbrauchten Kernbrennstoffe bis zum Punkt, dass sie vollständig abgebaut sind und nicht mehr gelagert werden müssen?
Das sind dieselben guten Fragen, die man für so gut wie jeden Reaktor stellen kann. Die Spaltprodukte lassen sich nur mit großem Aufwand in andere Stoffe umwandeln und da sie für das Gros der Radioaktivität im hochaktiven Abfall verantwortlich sind, wird der Aufwand in der Praxis auch durch fortschrittliche Reaktorkonzepte vermutlich nicht gerade klein.
Vermutlich ist es wie bei jedem anderen Kernkraftwerk. Und da sowohl als auch noch nicht zufriedenstellend beantwortet ist, bleibe ich Dir die Antwort hier ebenfalls schuldig.
Zu klären wäre außerdem noch die Frage, welche Optionen für den Bau von Kernwaffen die Bereitstellung des Brennstoffs für die SMRs liefert. Ich denke, die Gefahr der Proliferation ist im Zweifelsfall ein absolutes NO-Go für den SMR.
Ich persönlich glaube nicht an den proliferationsfesten Kernreaktor. Kluge Leute gibt es überall – die werden schon Mittel und Wege finden. Insbesondere, wenn Brutprozesse ins Spiel kommen. 1962 wurde eine Kernwaffe aus Reaktorplutonium gebaut, die auch explodierte. Sie war zwar relativ klein (ca. 20 kt) und damit für die USA oder Sowjetunion uninteressant, aber viele kleine Länder würden sicher nicht nein dazu sagen.
Ich bin aber trotzdem einigermaßen beruhigt, da ich davon ausgehe, dass der SMR trotz aller Versprechungen im Endeffekt nicht konkurrenzfähig sein wird.
Ich vermute das auch.
Der Punkt ist, das die neue Technologie unglaublich günstig sein muss um in der heiklen Nuklearbranche (kontrollen, vorschriften, etc.) rentabel zu sein.
Wobei gleichzeitig andere Technologien laufen günstiger werden.
Selbst wenn man optimistisch ist wird es noch mindestens 10 Jahre dauern bis der erste solche Reaktor fertig ist….
Das scheint mir auch so. Wir werden sehen, wohin die Reise geht.
Wie steht es denn mit der langfristigen Brennstoffversorgung der SMR?
Bezüglich Uranreaktoren heißt es, dass deren Brennstoff nur noch in begrenztem Maß zur Verfügung steht.
Am aktuellen Bedarf gemessen ist kostengünstiges (bis 130 $/kg) Natururan noch für viele Jahrzehnte vorhanden. Aufwändiger zu erschließende Vorkommen reichen noch Jahrhunderte.
Selbst die einigermaßen exotische Gewinnung aus Meerwasser ist nicht unbezahlbar (ca. 700 $/kg) und spätestens damit sind knappe Uranreserven kein Thema mehr.
was ich zb nicht wusste; die manschaft um alvin weinberg hatte bereits in den ’50gern funktionsfähige flüssigsalzreaktoren als prototypen vorgestellt. und mittlerweile sind die chinesen da wohl mit ihrer forschung recht zuversichtlich, innerhalb der nächsten jahre die ersten reaktoren tatsächlich zuverlässig zum laufen zu bekommen.
Gerade für 50 Jahre alte Konzepte schlagen zwei Herzen in meiner Brust. Einerseits wäre es phantastisch, wenn man sie mit der heutigen Technik realisieren könnte. Andererseits muss es Gründe geben, warum sie so lange Zeit praktisch niemand angefasst hat und auch heute nur ganz wenige Projekte auf der Welt laufen.
An Zuversicht ist die Kerntechnik nicht arm. Dieser Tage beginnt in China der Bau eines neuen schnellen Reaktors. Ich würde mich gerne begeistern lassen, bin aber nach den Erfahrungen der letzten 70 Jahre skeptisch.
Thorium
Wer auch immer die zündende Idee hat, wie man einen wirtschaftlich zu betreibenden Kernreaktor bauen kann, der im Wesentlichen Thorium (bzw. dessen Brutprodukte) verbrennt, kann damit rechnen, für den Rest der menschlichen Geschichte in einem Atemzug mit Archimedes genannt zu werden.
Thorium hat gewaltige Vorteile, die aber von gewaltigen Nachteilen begleitet werden, die zu überwinden in keinem großen Leistungsreaktor bisher gelungen ist. Vermutlich werde ich dazu mal was schreiben. Ich wünsche den laufenden Projekten alles Gute, bin aber skeptisch.
in fukushima hat tepco gerade die bestätigung für die (anscheinend) vollständige kernschmelze in reaktor 2 geliefert (hat ja nur 6 jahre gedauert):
https://www.japantimes.co.jp/news/2017/02/03/national/fukushima-radiation-level-highest-since-march-11/#.WJTk83fMyPR
530 sievert. deutlich. schönes loch im gitterrost unter dem druckbehälter:
https://www.japantimes.co.jp/wp-content/uploads/2017/02/n-tepco-a-20170203-870×330.jpg
Über 500 sievert pro Stunde. Wow. Unvorstellbar, wie stark die Strahlung dort ist.
Soviel ich weiß, sind normale Kernreaktionen unbezahlbar, weil die Folgekosten nicht eine tausend-jährige “Aufpasszeit”, sondern aufgrund der sehr langen Halbwärtszeiten es in die Millionen Jahre geht.
(D.h. es geht auf die Kosten aller künftigen Generationen)
Ich vermute, dass eher die Spaltprodukte mit mittleren Halbwertszeiten (Größenordnung einige 10 bis 100 Jahre) das Problem sind. Die führen dazu, dass bestrahlte Kernbrennstoffe Wärme entwickeln, die irgendwie abgeführt werden muss und ihre Aktivität (die ja im umgekehrten Verhältnis zur Halbwertszeit steht) ist so groß, dass ihre Handhabung nur unter großen Sicherheitsvorkehrungen stattfinden kann.
Meine Hoffnung ist die Kernfusion, da sind keine lanfristigen Folgeschäden zu erwarten.
Das wäre in der Tat wunderbar. Ich hoffe, ich werd’s erleben. Aber – siehe oben.
Ich frage mich ob bei vielen kleinen Kraftwerken das zu entsorgende Materieal letzendlich nicht größer wäre als bei wenigen großen ?
Gute Frage. Wenn es ähnlich große Brennelemente gibt wahrscheinlich nicht. Fall sie kleiner sind, wäre das Volumen vermutlich tatsächlich größer.
Wenn man der Beschreibung z.B. bei https://dual-fluid-reaktor.de/ folgt, dann waren in den 60ern die Werkstoffe fuer eine grosstechnische Umsetzung noch nicht verfuegbar. Deren Idee, hochaktive Spaltprodukte quasi neutral zu brueten klingt bestechend – ein erster Ansatz, Nuklearabfall wirklich zu entsorgen.
Die Dual-Fluid-Reaktor-Leute machen an mindestens einer Stelle einen Kardinalfehler, wenn sie von Materialeigenschaften schreiben: Sie nehmen Materialien mit den für sie passenden positiven Eigenschaften und blenden aus, dass diese auch negative Eigenschaften haben, die sie für den angedachten Einsatz in einem Dual-Fluid-Reaktor ungeeignet machen. An anderer Stelle habe ich angerissen, wie man eine Dampfturbine ausschaltet und gehe dabei etwas auf diesen Punkt ein.
BTW: Ich fände es wirklich gut, wenn die Politik die Forschung an Schwerionen-Technik positiv beeinflussen würde. Soweit mein bescheidener Kenntnisstand reicht, wäre das eine Möglichkeit, den bestehenden hochradioaktiven Atommüll halbwegs kostengünstig und sicher aus der Welt zu schaffen. Und würde da EIN Land führend sein, könnte dieses sogar ein Geschäft daraus machen, den Atommüll anderer Länder zu minimieren…
Das Interesse scheint weltweit nicht groß zu sein – und die Welt ist der Markt, nicht nur einzelne Länder. Und in der Welt gibt es auch kaum jemanden, der daran ernsthaft forscht.
Man mag mit guten Gründen vieles, was in Deutschland in Bezug auf die Kerntechnik entschieden wird und wurde für unsinnig halten, aber de facto sieht es im Rest der Welt nicht viel anders aus. Laut PRIS sind in den letzten zehn Jahren weltweit pro Jahr im Schnitt gerade mal 10 Anlagen neu in Betrieb gegangen und wegen Außerbetriebnahmen oder Unfällen liegt der Netto-Zubau bei ca. 1 GW pro Jahr – das ist gerade mal ein Kraftwerk. Selbst in China und Indien dürften die geburtenstarken Jahrgänge fürs Erste vorbei sein, denn die Anzahl neu genehmigter Projekte ist im selben Zeitraum kontinuierlich gesunken. So gut wie alle dauern länger und kosten mehr als ursprünglich gedacht. Weltweit. Das macht nicht nur mich skeptisch.
Doofe Frage: Warum betreiben die Firmen eine scheinbare ineffiziente Entwicklung dieser Minireaktoren und woher haben sie das Geld?
Die Frage ist alles andere als doof – immerhin sind die SMR-Entwickler ja keine öffentlichen Einrichungen, sondern private Unternehmen. Allerdings ist wirklich interessant, woher das Geld kommt, mit dem seit vielen Jahren im Wesentlichen bunte Bildchen erzeugt werden.
Im Fall von NuScale ist es das amerikanische Energieministerium. Immerhin vom Start weg 226 Mio. $.
Es wäre interessant (vielleicht ist das was für eine Studienarbeit in BWL?), die Finanzierungsmodelle aller beteiligten Firmen zu vergleichen. Soweit ich sehe (und das ist unter Umständen nicht besonders weit), finanzieren sich die an der SMR-Entwicklung beteiligten Firmen vor allem aus Investitionen großer Firmen bzw. institutioneller Investoren und öffentlichen Mitteln. Einfacher ist die Negativaussage: Definitiv finanziert sich niemand über den Verkauf von SMR.
Die Gründe dürften wie bei allem im Leben vielschichtig sein: Kluge Leute wollen gern coole Sachen bauen, Idealisten die Zukunft gestalten, Kaufleute viel Geld verdienen, notorische Unternehmer (was vielleicht so klingt soll beileibe kein Schimpfwort sein) etwas aufbauen,… Ich denke, man kann mit ziemlicher Sicherheit sagen, dass der Großteil der Leute, die daran arbeiten, von der Idee überzeugt ist. Allerdings neigen (durchaus nicht nur!) Techniker dazu, den ganzen Rahmenbedingungen zu wenig beachtung zu schenken, die aus funktionierender Physik funktionierende Technik machen: Wirtschaftlichkeit, Planbarkeit, Stimmung der Öffentlichkeit, Stimmung in der Industrie,…
Ich bin ja durchaus begeisterungsfähig, ob der Erfahrungen und der weltweiten Lage aber einfach skeptisch.
Kommentare (9)