In Heidelberg wird heute das Center for Quantum Dynamics (QCS) eröffnet. Von der modernen Quantenphysik die dort betrieben wird, verstehe ich nicht allzuviel; darum möchte ich darauf auch gar nicht weiter eingehen. Ich werde lieber über die Eröffnungsfeier berichten. Denn da hat heute amerikanische Nobelpreisträger Bill Phillips einen sehr interessanten Vortrag gehalten.
Phillips hat den Physik-Nobelpreis 1997 für seine Erforschung der Laserkühlung von Atomen erhalten. Diese Technik verwendet man unter anderem für den Bau und den Betrieb von Atomuhren. Diese extrem genauen Uhren sind heute nicht mehr wegzudenken und werden in vielen Bereichen eingesetzt (zum Beispiel bei der Satellitennavigation).
Und sie hängen sehr eng mit den Theorien von Albert Einstein zusammen. Genau das ist das Thema von Phillips Vortrag mit dem Titel “Time and Einstein in the 21st century”.
Der Hörsaal im Kirchhoff-Institut für Physik war gut gefüllt. So gut gefüllt, dass einige Leute aus Sicherheitsgründen wieder rausgehen mussten. Immerhin gabs nebenan noch einen Hörsaal in dem man das ganze via Video verfolgen konnte (der Saal war dann auch schnell voll). Glücklichweise war ich früh genug da und konnte Phillips live sehen. Es hat sich gelohnt.
Der Vortrag began mit der plakativsten Verbindung von “Time” und “Einstein” – dem bekannten Titelbild der Zeitschrift Time mit dem am 31. Dezember 1999 Albert Einstein zur “Person of the Century” gekürt wurde. Durchaus zu Recht – den Einstein hat die Wissenschaft und damit den Verlauf des ganzen Jahrhunderts dramatisch revolutioniert. Einstein hat sich mit einer ganz “simplen” Frage beschäftigt: “Was ist Zeit?” Seine Antwort darauf war ebenso “simpel”: Zeit ist das, was von einer Uhr gemessen wird…
Bill Phillips fragte nun weiter: Was ist eine Uhr? Seine Antwort: Etwas, dass uns eine Serie von periodischen Ereignissen liefert. Das konnte früher die Drehung der Erde um ihre Achse (Sonnenauf- und -untergang) oder um die Sonne sein – später dann die Schwingung eines Pendels oder die eines Quartzkristalls in einer modernen Uhr.
Aber all das ist nicht perfekt. Die Erde bewegt sich nicht absolut regelmäßig. Ein Pendel ändert z.B. durch Temperaturänderungen seine Schwingungsdauer. Und selbst die Quartzkristalle sind nicht identisch und verhalten sich von Uhr zu Uhr minimal anders. Anders ist es bei Atomen. Ein Atom eines bestimmten Elements ist mit allen anderen Atomen dieses Elements absolut identisch und alle verhalten sich immer gleich. Die besten Uhren sind also die, die auf den Eigenschaften der Atome basieren – die Atomuhren.
Ganz simpel gesagt funktioniert eine Atomuhr so: man nimmt ein Gas aus Caesium-Atomen (es muß Caesium sein, weil darauf der Zeitstandard basiert). Diese Atome “ticken” auf eine bestimmte Art und Weise (physikalisch gesehen geht es um Übergänge zwischen den Zuständen der Atome) und bewegen sich fort – entlang einer Strecke von etwa einem Meter. Am Anfang dieser Strecke wird mit dem Atomticken eine Uhr synchronisiert – am Ende der Strecke vergleicht man, wie sehr die Uhr davon abgewichen ist und korrigiert entsprechend.
Mit dieser Methode lassen sich hohe Genauigkeiten erreichen. Allerdings stößt man bald auf prinzipielle Probleme. Denn wenn die Atome sich bewegen, dann stößt man bei Messungen schnell auf den Dopplereffekt – also eine wahrgenommene Frequenzänderung verursacht durch die Bewegung. Das stört die Messungen. Und viel schlimmer: es gibt auch noch die relativistische Zeitdilatation die in Einsteins spezieller Relativitätstheorie beschrieben wird. Bewegte Uhren gehen langsamer. Je schneller sich die Atome also bewegen, desto langsamer “ticken” sie. Und diesen Effekt kann man niemals vermeiden – die einzige Möglichkeit die man hat, ist die Atome langsamer zu machen. Je langsamer sie sind, desto geringer ist die Zeitdilatation.
Aber wie kühlt man Atome? Wie kühlt man überhaupt Dinge? Jetzt kommt der Showteil des Vortrags der den Hörern und auch Phillips am meisten Spaß gemacht hat. Mit einer großen Flaschen voll mit flüssigen Stickstoff macht sich Phillips daran, die Dinge zu kühlen. Er zeigt das der eiskalte Stickstoff sofort zu kochen anfängt und verdampft wenn man ihn auf den (aus sich des Stickstoffs) brennend heißen Boden leert. Er macht die klassischen Experimente und kühlt Blumen und Gummibälle die danach zerbrechen. Und er weißt immer wieder darauf hin, dass man mit so einer Kälte eigentlich auch wunderbar Gase – zum Beispiel ein Gas aus Caseiumatomen? – kühlen können müsste. Um das zu demonstrieren bläst er jede Menge Luftballons auf und steckt sie eine Kiste voller flüssigen Stickstoff. Nun stellt sich allerdings heraus, dass das doch keine so gute Idee war. Denn das Gas in den Ballons – die Luft – ist durch die Kühlung flüssig geworden und so geht es auch mit andern Gasen. Kühlt man sie, werden sie irgendwann flüssig bzw. fest. Dann kann man damit aber keine Atomuhr mehr betreiben!
Kommentare (22)