Man muss die Atome also auf eine andere Art und Weise kühlen. Sie einfach in Kontakt mit etwas sehr kalten zu bringen, klappt nicht. Hier kommt nun die Laserkühlung ins Spiel für die Phillips seinen Nobelpreis bekommen hat. Denn wie wir – ebenfalls seit einer Arbeit von Einstein – wissen, besteht Licht aus Photonen und die wechselwirken mit Materie. Man kann also mit (Laser)Licht eine Kraft auf Atom ausüben. Und zwar dann, wenn dieses Licht genau die richtige Frequenz hat und es von den Atomen absorbiert wird.
In der Praxis muss man auch hier den Dopplereffekt berücksichtigen. Die Atome bewegen sich ja und “sehen” eine andere Frequenz als die, die die Laserquelle aussendet. Man wählt also Laserlicht mit einer Wellenlänge die ein bisschen röter ist als die, die die Atome eigentlich absorbieren würden. Bewegt sich nun ein Atom genau auf die Quelle zu, dann sieht es genau die richtige Frequenz und absorbiert das Photon. Wenn es sich in eine andere Richtung bewegt, dann klappt das natürlich nicht. Aber man braucht die Atome nur aus allen Richtungen mit dem Laser anstrahlen – und schon funktionierts und das Gas wird kühler.
Ein Problem bleibt allerdings. Die Atome werden nie ganz zum Stillstand kommen – sie bewegen sich immer ein kleines bisschen. Angenommen, ein Atom wäre gerade im Grundzustand und in Ruhe, dann würde es als nächstes ein Photon aus irgendeiner Richtung aufnehmen und anfangen sich ein wenig zu bewegen. Dann gibt es das Photon wieder irgendwo hin ab und bewegt sich durch den “Rückstoß”. Einerseits wird das Atom also dadurch sich immer irgendwo hin bewegen wollen – andererseits sorgt die genaue Frequenzabstimmung des Laserlichts für eine ständige Kühlung. Man kann nun ausrechnen, wann sich bei diesen beiden Effekten ein Gleichgewicht einstellt und wie kalt ein Gas aus bestimmten Atomen werden kann. Für Natrium ist das z.B. bei einer Temperatur von 240 Mikrokelvin! Kälter kann das Gas nicht werden.
Dachte man zumindest… 1985 haben Steven Chu (ebenfalls ein Nobelpreisträger) und seine Kollegen die Temperatur von auf diese Weise gekühlten Natrium-Gas gemessen. Das allein war schon knifflig genug – denn man kann da ja nicht einfach ein Thermometer reinstecken. Chu löste das Problem auf elegante Weise. Das Experiment wurde ja sowieso in einem Vakuum durchgeführt. Das gekühlte Gas nahm nur einen sehr kleinen Raum ein (die Atome bewegen sich ja kaum und sind in einer Art “optischen Molasse” gefangen). Schaltet man die Kühlung kurz aus, macht das Gas das, was Gase im Vakuum immer tun: es dehnt sich aus. Dann kühlt man wieder und schaut nach, wieviel von dem Gas noch im ursprünglichen Volumen ist. Da die Ausdehnunggeschwindigkeit von der Temperatur abhängt, kann man die nun berechnen. Und sie betrug genau den theoretisch vorhergesagten Wert von 240 Mikrokelvin.
1988 haben Phillips und sein Kollegen allerdings in einem ähnlichen Experiment Caesium-Atome mit einer Temperatur von 700 Nanokelvin gemessen! Das ist zweihundertmal kälter als sie eigentlich sein dürften! Sie waren also deutlich kälter als erlaubt. Eine Theorie, die etwas verbietet, was in der Realität stattfindet kann aber nicht wirklich korrekt sein – also musste man eine neuen Theorie suchen. Die wurde auch gefunden – aber Phillips hat sie leider nicht erklärt (und ich bin nicht Fachmann genug um sie erklären zu kennen). Jedenfalls war es mit diesem neuen theoretischen Unterbau möglich, die Atome sehr kühl zu bekommen. Anstatt mit mehreren hundert Metern pro Sekunde bewegten sie sich nun nur mehr mit einer thermischen Geschwindigkeit von einem Zentimeter pro Sekunde!
Das Problem war jetzt nur: mit solchen langsamen Atomen kann man keine Atomuhr im üblichen Design bauen! Die langsamen Atome würden die Strecke von einem Meter zwischen Synchronisation- und Korrekturstation nicht mehr schaffen. Man baute also “atomare Brunnen” in denen die Atome quasi in die Luft geworfen werden und dann einfach wieder runterfallen. Dazwischen synchronisiert und korrigiert man damit die Uhr. Solche Atomic Fountain Clocks gehören zu den genausten Uhren und machen in 100 Millionen Jahren nur einen Fehler von einer Sekunde!
Kommentare (22)