Man bekommt die Atome noch kühler, wenn man sie richtig speichert. Natürlich kann man diese Atome, die kälter sind als alles andere im Universum nicht einfach in irgendeinen Behälter geben – jede Materie wäre dramatisch viel wärmer und ungeeignet zur Speicherung. Die muss durch magnetische Kräfte erfolgen und mit so einer magnetischen Falle kann man die kalten Atome nicht nur speichern, man kann auch diejenigen der Atome, die ein bisschen wärmer sind als die anderen, absondern. Genauso macht man es ja auch mit heißer Suppe oder Tee: man pustet drauf und die Moleküle, die sich am schnellsten bewegen (und damit am heissesten sind) werden weggeblasen. Der Rest der Flüssigkeit hat nun eine niedrigere Durchschnittstemperatur.
Geschwindigkeitsverteilung von Atomen in Rubidium-Gas. Links ist noch nichts kondensiert. In der Mitte und rechts gibt es einen deutlichen Peak – ein Bose-Einstein-Kondensat (BILD: NIST)
Mit dieser Art der Kühlung kann man das Gas nochmal kälter machen – und schaffte es, eine der seltsameren Vorhersagen von Albert Einstein zu bestätigen. Der sagte 1924 voraus, das bei einem Gas, das kalt und dicht genug ist, eine große Menge an Atomen aufhört sich zu bewegen. Einstein hat hier natürlich noch nicht die Heisenbergsche Unschärferelation bzw. ganz allgemein die Quantenmechanik berücksichtigt – heute wissen wir, dass ein Atom nie wirklich aufhören kann sich zu bewegen aber innerhalb dieser Grenzen bleibt Einsteins Vorhersage korrekt und das was er (gemeinsam mit Satyendranath Bose) vorhergesagt hat, nennt man heute Bose-Einstein-Kondensat. 1995 konnte es mit superkalten Rubidiumatomen erstmals hergestellt werden.
Was macht man noch so alles mit diesen kalten Atomen? Man baut bessere Atomuhren! Und die benutzt man beispielsweise um herauszufinden, ob die Naturkonstanten wirklich konstant sind. Denn wenn man wissen will, ob die sich vielleicht doch im Laufe der Zeit ändern, muss man die Zeit genau genug messen können. Man kann mit solchen kalten Atomen vielleicht bessere Quantencomputer bauen. Man kann damit die existieren Theorien mit einer extrem hohen Genauigkeit prüfen. Mit Atomuhren wurden ja schon 1971 im berühmten Hafele-Keating-Experiment die relativistische Zeit-Dilatation bestätigt. Aber auch die allgemeine Relativitätstheorie zeigt sich in den Atomuhren. Hier wird ja der Einfluss der Gravitationskraft auf die Zeit beschrieben und die Theorie besagt, dass Uhren umso langsamer gehen, je näher sie der Erdoberfläche sind. Mittlerweile sind die Atomuhren genau genug, um auch das messen zu können. Die Stadt Boulder, in der die Atomuhr steht, die den amerikanischen Zeitstandard vorgibt, liegt auf 1655 Meter Höhe. Will man die von ihr angezeigte Zeit mit gleicher Genauigkeit für eine Stadt auf Meereshöhe umrechnen, muss man die Position der Uhr (in der Höhe) auf wenige Zentimeter genau kennen. Und selbst das reicht momentan nicht aus, weil das Gravitationsfeld der umliegende Berge die Korrektur noch komplizierter macht. Wie Phillips erklärte, ist es zur Zeit nicht möglich, die in Boulder gemessene Zeit mit gleicher Genauigkeit irgendwo anders hin zu “exportieren” weil man das lokale Gravitationsfeld noch nicht gut genug vermessen hat um die gravitative Zeitdilatation korrigieren zu können…
Man kann also mit den gekühlten Atomen jede Menge tolle Sachen machen. Aber, wie Phillips anmerkt: Wahrscheinlich sind uns die wichtigsten Anwendungen für die Laserkühlung noch nicht eingefallen!
Kommentare (22)