Wenn man sich die Sonne so ansieht, dann sieht sie meistens ziemlich ruhig und friedlich aus. Nur mit entsprechenden Teleskopen kann man sie als den riesigen, brodelnden Ball aus heißem Gas sehen, der sie in Wahrheit ist. Dass Sterne bei genauerer Betrachtung ziemlich komplexe Objekte sind, wissen wir ja schon seit einigen Jahrzehnten. Aber sind sie auch tatsächlich chaotisch? Das haben sich Arnold Hanslmeier von der Universität Graz und seine Kollegen gefragt (“The chaotic solar cycle II. Analysis of cosmogenic 10Be data”) und die Sache mal genauer betrachtet.
Es geht um die Frage der Sonnenaktivität. Damit ist nicht die Helligkeit der Sonne gemeint, sondern die elektromagnetischen Prozesse in ihrem Inneren. Die Sonne besteht aus einem Plasma, also aus Gas, in dem die Elektronen der Atomhülle nicht mehr an die Atomkerne gebunden sind. Deswegen ist das Plasma auch nicht mehr elektrisch neutral, sondern geladen und seine Bewegung wird von den Magnetfeldern in der Sonne beeinflusst. Gleichzeitig bestimmt die Bewegung der elektrisch geladenen Plasmaströme aber auch die Stärke und Ausrichtung der Magnetfelder (ich habe das hier ausführlich erklärt). Die elektromagnetischen Vorgänge auf der Sonne können dann zum Beispiel für mehr oder weniger Sonnenflecken sorgen oder für mehr oder weniger Protuberanzen und Explosionen, die Plasma ins Weltall schleudern. Gibt es viele Flecken und Protuberanzen, ist die Sonnenaktivität hoch; gibt es wenig, dann ist sie gering. Seit knapp 200 Jahren beobachten wir die Sonne gut genug, um diese Aktivität aufzeichnen zu können, und wir wissen, dass sie sich in einem 11-Jahres-Zyklus ändert: Alle 11 Jahre ist die Aktivität besonders hoch.
Aber die längerfristige Entwicklung der Sonne zu untersuchen ist viel schwieriger. Wir wissen ja nicht, wie die Sonne vor 500, 1000 oder 5000 Jahren ausgesehen hat. Um Aussagen über die Aktivität in früheren Zeiten machen zu können, braucht es indirekte Methoden. Hanslmeier und seine Kollegen haben sich deswegen angesehen, wie groß die Menge an Beryllium-10-Isotopen in Eiskernen ist, die an den Polen heraufgebohrt wuren. Beryllium-10 ist radioaktiv mit einer Halbwertszeit von wenig mehr als einer Million Jahre und es kommt normalerweise über die natürliche kosmische Strahlung aus dem All zu uns auf die Erde. Ist die Sonne allerdings gerade besonders aktiv, dann schleudert sie besonders viel geladenes Plasma ins All und das wirkt wie eine Art “Schutzschild”, das die kosmische Strahlung nicht durchlässt. Ist die Sonnenaktivität also hoch, erreicht wenig Beryllium-10 die Erde und umgekehrt. Auf diese Weise (und mit anderen, ähnlichen Methoden) kann man also auch die Sonnenaktivität vergangener Zeiten rekonstruieren. So sieht das in der Arbeit von Hanslmeier und seinen Kollegen aus:
Hier sieht man zwei verschiedene Rekonstruktionen; einmal mit dem Isotop C-14; einmal mit Beryllium-10 (die Übereinstimmung ist nicht ganz perfekt, da man bei der Auswertung der Beryllium-Daten auch die Veränderungen im Magnetfeld der Erde berücksichtigen muss, was nicht so einfach ist). Dabei muss man allerdings berücksichtigen, dass die Daten aus technischen Gründen über 25-Jahres-Intervallen gemittelt werden mussten; der klassische 11-Jahres-Zyklus kann in diesen Rekonstruktionen also nicht gesehen werden. Aber es gibt ja durchaus auch längerfristige Aktivitätszyklen, die dem 11-Jahres-Zyklus überlagert sind.
Hanslmeier und seine Kollegen wollten nun wissen, ob diese Veränderung der Sonnenaktivität chaotische Aspekte aufweist oder nicht. Das ist ein klassisches Problem in der Physik bzw. Mathematik: Man hat eine sogenannte “Zeitreihe”, also eine Menge an Datenpunkten die zeitlich aufeinander folgen und möchte wissen, ob da irgendeine Ordnung drin steckt oder eben nicht. Kennt man die physikalischen Gesetze, anhand derer die Zeitreihe erzeugt wird, kann man das oft vergleichsweise einfach machen. Hier hat man aber nur jede Menge Messwerte und weiß nicht genau, welche physikalischen Gesetzmäßigkeiten dahinter stecken. Methoden zur Analyse von Zeitreihen gibt es jede Menge und Hanslmeier et al haben einige von ihnen ausprobiert. Zum Beispiel die “Delayed Coordinates”. Da trägt man in einem Diagramm die Werte der Zeitreihe gegen die Werte der Zeitreihe zu einem späteren Zeitpunkt auf. Hat man zum Beispiel eine völlig regelmäßige Zeitreihe, bei der die Sonnenaktivität immer gleich stark ist, also immer den selben Wert hat, dann sieht man das auch in den Diagrammen der “Delayed Coordinates”. Hat die Aktivität zum Zeitpunkt 1 den Wert x, dann hat sie diesen Wert auch zum Zeitpunkt 2, zum Zeitpunkt 10, zum Zeitpunkt 100, und so weiter. Wenn ich im Diagramm also nun den Zeitpunkt 1 gegen den Zeitpunkt 101, den Zeitpunkt 2 gegen den Zeitpunkt 102, den Zeitpunkt 3 gegen den Zeitpunkt 103, usw auftrage, dann bekomme ich immer den selben Wert und im Diagramm für die gesamte Zeitreihe nur einen einzelnen Punkt. Und je nachdem wie stark die Variation der Sonnenaktivität ist und ob dort bestimmte Zyklen zu erkennen sind oder nicht, bekomme ich bei den Diagrammen der “Delayed Coordinates” verschiedene regelmäßige oder unregelmäßige Strukturen. So sieht das zum Beispiel aus für ein Delay von 1, 5, 10, 15, 20 und 25 Zeitschritten.
Kommentare (6)