Das Diagramm zeigt, wie die UV-Strahlung die man vom Stern messen kann, schwächer wird, wenn der Planet WASP-12b vorüber zieht. Die blauen Punkte sind die Messwerte und die Kurve zeigt, wie das Licht schwächer und wieder stärker werden müsste, wenn da wirklich ein Mond mit Plasmaring ist. Die Datenpunkte passen zwar gut zu der typisch asymmetrischen Kurve. Aber so richtig überzeugend ist das meiner Meinung nach noch nicht. Ein Modell an vorhandene Daten anzupassen ist fast immer möglich. Das gilt hier ganz besonders, denn da man keine Ahnung hat, wie stark der Vulkanismus auf einem Exomond ist, kann man die Menge des ins All geschleuderten Plasmas im Prinzip beliebig festsetzen und so immer ein Modell finden, das zu den Daten passt.

Dieser Schwachpunkt ist auch Ben-Jaffel und Ballester bewusst und deswegen schlagen sie vor, bei WASP-12b und HD 189733b nochmal genau hinzusehen. Nur wenn sich der Effekt auch bei zukünftigen Beobachtungen genau so zeigt, wird es interessant. Und wenn man hier nichts findet, dann vielleicht anderswo. Irgendwo müssen die extrasolaren Monde ja sein! Und irgendwann müssen wir sie auch finden!

1 / 2

Kommentare (8)

  1. #1 pederm
    8. April 2014

    Interessant. Aber mal ehrlich: Durch diese fünf Datenpunkte kann man fast alles legen, die “typisch asymmetrische” Kurve, ihr Spiegelbild oder eine symmetrische Kurve. Stimme zu: nicht wirklich überzeugend!

  2. #2 Ludmila
    https://scienceblogs.de/planeten
    8. April 2014

    Mich störte an dem Paper auch, dass die mal eben ein planetares Magnetfeld von 7 Gauss am Äquator genommen haben. Das ist mehr als Jupiter hat und eigentlich sollte das Magnetfeld relativ schwach sein, weil die Planeten recht langsam rotieren (gebundene Rotation). Ihr Argumentation für so ein starkes Magnetfeld ist ‘scaling’ und bedeutet übersetzt.: “Keine Ahnung, wie die Planetologen auf das Magnetfeld kommen, aber wir haben hier mal ein paar Gleichungen und blasen das jetzt einfach mal auf”. Das geht fast immer schief.

    Und wenn das Magnetfeld des Planeten so stark sein soll, sollte man auch die Wechselwirkung mit dem Stern sehen. Das wird aber nicht mal erwähnt. Wenn eine andere unabhängige Methode einen Teil deines Modells bestätigen könnte, sollte man das wohl erwähnen. Was noch mehr bestätigt, dass die eigentlich wenig Ahnung von der Theorie dahinter haben.

    Also halten wir mal fest: Datenlage mehr als schwach und es wird auch nicht besser werden. Alternative Erklärungen bzw. eindeutige Vorhersagen Fehlanzeige. Theorie: Schwach.

    Na ja.

    Die Idee find ich aber prinzipiell gut. Es wird nur schwierig, das eineindeutig zu testen.

  3. #3 Florian Freistetter
    8. April 2014

    @Ludmila: Mir kam das auch irgendwie so vor, als wollte man da jetzt unbedingt irgendwas finden, das man in die Form der Beobachtungsdaten pressen kann. Es ist auch ein wenig optimistisch, jetzt schon zu modellieren, welche Ionen so ein Exovulkan auf nem Exomond ins All schmeisst. Da sind noch zu viele freie Parameter…

  4. #4 stone1
    9. April 2014

    Wäre vulkanische Aktivität auf einem Mond mit geringer Schwerkraft eigentlich die einzige mögliche Ursache für einen solchen Plasmaring oder hätte der auch aus einem anderen Grund entstehen können?

  5. #5 Florian Freistetter
    9. April 2014

    @stone1: “Wäre vulkanische Aktivität auf einem Mond mit geringer Schwerkraft eigentlich die einzige mögliche Ursache für einen solchen Plasmaring”

    Naja, irgendwie muss das Gas ja ins All kommen und Vulkane sind da eben eine gute Möglichkeit. Spontan würde zumindest mir kein anderes Phänomen einfallen, mit dem man regelmäßig Gas von der Oberfläche eines Himmelskörpers ins All kriegt.

  6. #6 Alderamin
    9. April 2014

    @Florian

    Ein Superflare, der die Atmosphäre eines eng kreisenden Planeten trifft?

    Neben den flare-freudigen roten Zwergsternen gibt es auch einige wenige G-Sterne, die riesige Flecken entwickeln und gewaltige Flares verursachen können, zehntausend mal stärker als unsere Sonne. Der Grund dafür ist noch unbekannt.

    Wenn der Sonnenwind Planetenatmosphären erodiert, vielleicht könnten dann solche Flares auf einen Schlag eine nennenswerte Menge Gas z.B. von einem Gasriesen abtragen?

  7. #7 stone1
    9. April 2014

    @Florian und Alderamin:
    Ich hab natürlich selbst auch keine Ahnung, was sonst als Erklärung für einen Planetenplasmaring in Frage käme, es ist für mich erstaunlich genug, dass man überhaupt schon kurz davor steht, extrasolare Monde zumindest indirekt zu entdecken.

  8. #8 Alderamin
    9. April 2014

    @stone1

    Es gibt noch andere Möglichkeiten, extrasolare Monde nachzuweisen:

    – Im Transit verursachen sie selbst eine Abschattung, die zetilich versetzt zu der des Planeten wäre, und sich bei mehreren Transits um denjenigen des Planeten heumbewegen sollte; da man schon Planeten von Merkurgröße nachweisen kann, sollte es für große Monde eines Kalibers wie Titan oder Ganymed schon reichen.
    – Wenn sie groß gegenüber dem Planeten sind, sollten sie dessen Transits verzögern oder vorverlegen, je nachdem auf welcher Seite des Planeten sie sich befinden.

    Die erste Methode würde also z.B. große Monde eines Hot Jupiter finden, die zweite würde den Erdmond bei der Erde nachweisen. Die Plasmamethode wäre natürlich eine interessante zusätzliche Methode, die (bei Nachweis über Radiostrahlung) nicht einmal auf Transits angewiesen wäre.

    Astronomen sind halt sehr findig, wenn es darum geht, aus einer unaufgelösten Beugungsfigur einer Punktlichtquelle Informationen herauszuquetschen, ein wie großer Planet welcher Masse und mit welcher Atmosphäre da in Begleitung eines Mondes einen Fixstern in welcher Zeit und welchem Abstand umkreist.