Das macht aber auch klar, wie wichtig es ist die Korona zu verstehen, wenn man verstehen will, wie die Sonne abgesehen von ihrer Gravitationskraft mit dem Rest des Sonnensystems wechselwirkt. Der Sonnenwind kann durchaus einen starken Einfluss auf die anderen Planeten haben. Auf der Erde erzeugt er die schönen Polarlichter, wenn er auf unsere Atmosphäre trifft und dort mit den Molekülen der Luft reagiert. Vor weiteren Folgen schützt uns meistens das Magnetfeld unseres Planeten, dass die elektrisch geladenen Teilchen nicht durchdringen können. Dem Mars fehlt so ein Magnetfeld und dort hat der beständig direkt auf den Planeten treffende Sonnenwind im Laufe der Jahrmillionen dazu geführt, dass sich seine Atmosphäre fast komplett verflüchtigt hat. Es ist also klar, wie wichtig es ist, den Sonnenwind zu verstehen und will man wissen, wie er funktioniert, muss man auch die Korona verstehen.
Aber die hat die Wissenschaftler schon seit langer Zeit vor viele Rätsel gestellt, von denen längst nicht alle gelöst worden sind. Ein paar aber schon, zum Beispiel das Geheimnis um das Element Coronium. Am 7. August 1869 fand eine totale Sonnenfinsternis statt und die Astronomen wollte sie natürlich nutzen, um die Korona zu beobachten und zu analysieren. Damals war auch die Technik der Spektroskopie schon in Gebrauch. Erst wenige Jahre zuvor hatten Gustav Kirchoff und Robert Bunsen gezeigt, dass man im Licht einer Lichtquelle bestimmte dunkle oder helle Linien finden kann und diese Linien durch die Anwesenheit der verschiedenen chemischen Elemente entstehen, die Bestandteil der Lichtquelle sind. Wenn das Sonnelicht also durch die Materie strahlt, aus der die Sonne besteht und wir auf der Erde dieses Licht analysieren, können wir herausfinden, woraus sie besteht.
1869 wollten die Astronomen Charles Young und William Harkness so eine Spektralanalyse für das Licht durchführen, das uns von der Sonnenkorona erreicht. Und sie entdeckten dabei eine Linie, die von keinem bekannten chemischen Element erzeugt worden sein konnte. Natürlich hatten die Wissenschaftler alle Elemente die man auf der Erde finden konnte untersucht und wussten, welche Linienmuster sie erzeugten. Aber die seltsame grüne Linie, die bei der Spektralanalyse der Korona auftauchte, passte nirgendwo dazu. Sie schlossen also, dass es sich um ein neues Element handeln muss, das offensichtlich nicht auf der Erde, aber dafür in der Korona der Sonnen vorkommt und nannten es Coronium. Der berühmte Dimitri Mendelejew, der das ebenso berühmte Periodensystem der Elemente aufstellte, benannte Coronium in Newtonium um. Aber am Ende stellte sich heraus, dass weder Coronium noch Newtonium tatsächlich existierten.
Die Linien im Licht der Sonne entstehen ja, wenn Strahlung von den Elektronen in den Hüllen der Atome beeinflusst wird. Da jedes chemische Element eine ganz charakteristische Anordung von Elektronen hat, erzeugt auch jedes ein charakteristisches Linienmuster. Aber Atome können ihre Elektronen ja auch verlieren. Steckt man genug Energie in so ein Atom, dann bewegen sich die Elektronen so schnell, dass sie nicht mehr an den Atomkern gebunden sind. Solche Atome sind dann “ionisiert” und wie oft sie ionisiert werden können, hängt von der Menge an Elektronen ab, die sie besitzen. Ganz besonders viele Elektronen findet man in der Hülle von Eisenatomen. Wenn man richtig viel Energie in so ein Eisenatom steckt, kann man es daher auch richtig oft ionisieren. Und genau das passiert in der Korona. In den 1930er Jahren entdeckten die Wissenschaftler Walter Grotrian und Bengt Edlén, dass die Linie, die man dem Coronium zugeschrieben hatte, in Wahrheit von Eisenatomen erzeugt werden, die ganze 13 Mal ionisiert worden waren! Das hatte man vorher einfach übersehen, weil niemand damit gerechnet hatte, dass solche hoch ionisierten Atome überhaupt irgendwo vorkommen können. Damit sie sich bilden, braucht es nämlich wirklich hohe Temperaturen die auf der Erde schlicht und einfach nicht vorkommen.
Kommentare (1)