Ohne die Entfernung zu diesen Nebeln bestimmen zu können, war es allerdings nicht möglich, diese Frage zu beantworten. Das änderte sich, als die Astronomin Henrietta Swan Leavitt 1912 eine spezielle Gruppe von Sternen untersuchte: die Cepheiden. Das sind Sterne, deren Helligkeit sich periodisch im Verlauf einiger Tage ändert. Leavitt fand heraus, dass die Periode der Helligkeitsschwankungen mit der wirklichen Helligkeit (nicht der scheinbaren, die wir von der Erde aus sehen können) zusammenhängt. Kennt man also die Periode der Helligkeitsänderung P (und die lässt sich leicht beobachten), kann man die wahre Helligkeit M nach folgender Formel bestimmen:

M = -1,43 – 2,81 * log (P)

Hier wird die Periode P in Tagen gemessen und die Helligkeit M in Magnituden.
Nun weiß man, wie hell der Stern wirklich ist und man kann beobachten kann, wie hell der Stern uns von der Erde aus gesehen erscheint (das ist seine scheinbare Helligkeit m). Jetzt lässt sich daraus leicht bestimmen, wie weit er entfernt sein muss.
Die Formel dafür nennt man Entfernungsmodul und sie lautet:

m – M = -5 + 5 log r

m und M werden hier wieder in Magnituden angegeben und die Entfernung r in Parsec. Ein Parsec entspricht einer Entfernung von 3,262 Lichtjahren bzw. circa 31 Billiarden Kilometern.
1923 schaffte es der Astronom Edwin Hubble dann, Cepheiden im Andromedanebel zu beobachten. Mit der Beziehung zwischen Periode und Helligkeit war er imstande, die Entfernung zu berechnen. Es stellte sich heraus, dass es sich dabei tatsächlich um ein Objekt handelt, dass sich außerhalb der Milchstraße befindet und eine eigenständige Galaxie darstellt!

2) Berechnung der Entfernung zur Andromeda-Galaxie mit Aladin

Um die Entfernung der Andromeda-Galaxie mit dem Program Aladin (kann hier runtergeladen bzw. online benutzt werden) zu bestimmen, muss zuerst nach entsprechenden Beobachtungsdaten gesucht werden. Um die Perioden-Leuchtkraft-Beziehung auszunutzen, werden Daten für die Perioden von Cepheiden in der Andromedagalaxie benötigt. Um diese zu finden, wird eine Suche in den vorhandenen Katalogen gestartet:
 
Datei -> Öffnen -> rechts unter “Katalogserver”, “All ViZier” wählen.

Als “Ziel” gibt man hier natürlich “Andromeda” ein (oder die zugehörige Messier-Nummer “M31“). Da wir noch nicht wissen, in welchen Katalog die gesuchten Daten zu finden sind, ist es am besten, über die Schlagwort-Suche nach allen Katalogen zu suchen, die Daten über Cepheiden enthalten. Dazu gibt man im entsprechenden Feld das Suchwort “Cepheid” ein. Mit einem Klick auf “Absenden” wird die Suche gestartet:

i-40a80a30ca091e922db7bab0aa409f33-bild1-thumb-500x351.jpg

Als Resultat erhalten wir drei Kataloge:

i-51faed133e43be749f17bedd727120b0-bild2-thumb-500x412.jpg

Im Feld “Description” sind weitere Informationen zu den Katalogen enthalten.

Wir wählen den aktuellsten Katalog aus dem Jahr 2003 aus. Im Hauptfenster von Aladin sehen wir nur die Position der im Katalog enthaltenen Objekte; rechts im “Stapel” von Aladin erkennt man das zugehörige Symbol des Katalogs „J.A+A.402.113″.

i-f259df275cd89182bdde2b03c847bc94-bild3-thumb-500x360.jpg

Im nächsten Schritt wollen wir die Katalogdaten genauer betrachten. Dazu wählen wir aus der Werkzeugleiste (links neben dem Stapel) das Werkzeug “wahl” und markieren alle Cepheiden. Im Meßfenster (unter dem Hauptfenster) erscheinen nun die einzelnen Katalogeinträge.

i-68d850474b025d13408c0ab17f0097e1-bild4-thumb-500x363.jpg

ID” ist die Bezeichnung des Sterns; “RAJ2000” und “DEJ2000” geben die Rektaszension und Deklination der Cepheiden an, also deren Position am Himmel. “Rcmag” und “Icmag” sind die scheinbaren Helligkeiten der Sterne, gemessen mit verschiedenen Filtern. Mit “DeltaRc” wird die Fehlergrenzen der Helligkeitsmessung angegeben. “Age” ist das Alter der Sterne und unter “IcFile” und “RcFile” sind die detaillierten Messkurven für die Helligkeiten verlinkt. Die Spalte, die uns hier besonders interessiert, ist mit “Per” überschrieben und gibt die Periode der Helligkeitsänderung an.

Betrachtet man die komplette Liste, dann sieht man, dass die Periode nicht für alle Sterne gemessen werden konnte. Um die Daten übersichtlicher zu gestalten, wollen wir nun einen Filter definieren, der nur diejenigen Cepheiden anzeigt, für die Periodenmessungen vorliegen.

1 / 2 / 3 / 4

Kommentare (8)

  1. #1 Gluecypher
    26. Februar 2009

    Wow, langer, sehr interessanter Post. Aber was mich ja immer ein wenig stört ist folgendes: diese Enfernungsbestimmungen sind mit enormen Fehlern behaftet, im obigen Fall 5,5%. Wenn man jetzt annimmt, dass dieser Fehler für Objekte mit zunehmender Entfernung mit Sicherheit nicht geringer wird (egal, welche Methode man jetzt für wirklich große Enfernungen benutzt i.e. Rotverschiebung etc) und andererseits aber die Helligkeit von Typ 1 Supernovae dazu verwendet, die Ausdehnungsgeschwindigkeit des Universums zu messen, wie sicher ist man, dass das keine Artefarkte aus der Messung selbst sind i.e. “Rauschen”? Denn die Kurve, die ich von der Messung gesehen habe war mit Error-Bars versehen, in die man ziemlich viele Kurven hätte fitten können, unter anderem auch jene, welche die Authoren reingelegt haben. Und welche anderen Hinweise hat man, um diese Messungen zu verifizieren? Hast Du da mal ein paar links oder weiterführende Literatur?

  2. #2 florian
    26. Februar 2009

    @Gluecypher: Also den Fehler in dieser Arbeit darf man nicht so tragisch nehmen. Hier wurde ja wirklich mit den simpelsten Methoden gearbeitet. In der “echten” Forschung geht das schon noch genauer.

    Zu den Methoden der Beobachter, ihre Kurven zu fitten, kann ich als Theoretiker im Moment nicht viel sagen. Aber erfahrungsgemäß wissen die, was sie tun und können aus den Daten ziemlich viel rausholen, auch wenns auf den ersten Blick nicht so aussieht. (Beobachtende) Astronomie ist ja im Prinzip nichts anderes, als herauszufinden, wie man aus tendentiell miesen Daten trotzdem noch was vernünftiges rausholen kann 😉

    Ich schau aber mal, vielleicht finde ich noch was. Wenn du es ganz genau wissen willst, dann findest du aber sicher bei ADS haufenweise Facharbeiten zum Thema.

  3. #3 Ret
    16. April 2013

    was mich wahnsinnig fasziniert, sind die formeln. woher hat man die u weiß, dass sie stimmen? zb. das verhältnis zwischen wahrer magnitude u periode. ist ja nicht so, dass man schnell hinfliegen ksnn u mal nachschaun.

  4. #4 Florian Freistetter
    16. April 2013

    @rEt naja das ist halt eine empirische Formel. Wenn man sich die Perioden und die Helligkeiten anschaut dann sieht man genau diesen Zusammenhang. Denn man mittlerweile auch durch theoretische Überlegungen begründen kann weil man weiß wie veranderliche Sterne funktionieren.

  5. #5 Alderamin
    16. April 2013

    @Ret

    Man hat sich langsam die Entfernungsleiter hochgearbeitet. Für die nächsten Sterne kann man die Entfernung per Parallaxe messen (der Stern wackelt vor dem Hintergrund hin- und her, wenn die Erde sich von einer Seite der Sonne zur gegenüberliegenden bewegt).

    Auf größere Entferung konnten dann z.B. die Bewegungen von Sternen in offenen Sternhaufen benutzt werden, um deren Entfernung zu bestimmen. Daran und an beobachteten Doppelsternen, deren Entfernung gemessen wurde, konnte man wiederum die Helligkeit von Sternen je nach Spektralklasse kalibrieren.

    Dies führt dann in die Entfernung von periodischen Veränderlichen (Cepheiden). Davon hat Henrietta Leavitt eine Reihe in der Großen Magellanschen Wolke beobachtet, die in etwa alle gleich entfernt sind. Mit der Entfernung der Magellanschen Wolke folgt dann die Perioden-Leuchtkraft-Beziehung, die bis in den Andromeda-Nebel reicht (und heute noch weiter).

    Seit dem Astrometrie-Satelliten Hipparcos gelang es, die Entfernung von Cepheiden direkt per Parallaxe zu messen und damit wurde diese Skala sehr viel genauer. An der Cepheiden-Skala konnte mit dem Hubble-Teleskop wiederum die Skala eines bestimmten Supernova-Typs (Ia) kalibriert werden, mit dem man schließlich die Rotverschiebung der Galaxien kalbrieren konnte. Und somit kann man heute Entfernungen bis an den Rand des sichtbaren Universum bestimmen.

    Siehe auch https://en.wikipedia.org/wiki/Cosmic_distance_ladder

  6. #6 Von Miller
    22. November 2016

    Was mich interessieren würde, ist, wie denn die gute Frau Leavitt herausfand, dass die Periode der Helligkeitsschwankungen mit der wirklichen Helligkeit zusammenhängt.

  7. #7 klauszwingenberger
    22. November 2016

    @ Von Miller:

    Indem sie eine Stufe auf der Entfernungsleiter herunterstieg.

    Die hellsten Cepheiden lagen schon zur Zeit von Frau Leavitt gerade so im Bereich der Parallaxen-Methode. Die liefert über geometrisch messbare Winkel, die optisch messbaren scheinbaren Helligkeiten und den (das?) Entfernungsmodul absolute Leuchtkraftdaten (die “wirkliche Helligkeit”).

  8. #8 Alderamin
    22. November 2016

    @Von Miller

    Streng genommen hat Frau Leavitt zunächst nur eine Beziehung der Entfernung der Kleinen Magellanschen Wolke zu anderen Cepheiden aufgestellt. Aus dem englischen Wikipedia-Artikel:

    In 1908, the results of her study were published, which showed that a type of variable star called a “cluster variable”, later called a Cepheid variable after the prototype star Delta Cephei, showed a definite relationship between the variability period and the star’s luminosity. This important period-luminosity relation allowed the distance to any other cepheid variable to be estimated in terms of the distance to the SMC. Hence, once the distance to the SMC was known with greater accuracy, Cepheid variables could be used as a standard candle for measuring the distances to other galaxies.

    Wie weiter im Text zu lesen ist, ermittelte Ejnar Hertzsprung die Entfernung einiger näherer Cepheiden und ermöglichte so die absolute Kalibrierung von Leavitts Perioden-Leuchtkraftbeziehung. Ich nehme an, Hertzsprung nutzte dabei Cepheiden in Sternhaufen oder Mehrfach-Systemen, deren Entfernung anhand der Spektralklasse von dort enthaltenen Hauptreihensternen abgeschätzt werden konnte. So viel ich weiß, gibt es keinen Cepheiden, der im Bereich damals schon bestimmbarer trigonometrischer Parallaxenmessungen liegt.

    Die Cepheidenskala war lange Zeit um den Faktor 2 unsicher, die Andromeda-Galaxie machte noch in den 70-Jahren einen großen Satz von 1,7 Millionen auf 2,5 Millionen Lichtjahre Entfernung, als man entdeckte, dass es 2 Klassen von Cepheiden mit einer Größenklasse Helligkeitsunterschied gibt.

    Mittlerweile basiert die Cepheidenskala auf Messungen trigonometrischer Parallaxen naher Cepheiden durch den Astrometrie-Satelliten HIPPARCOS und sie ist sehr gut kalibriert.