Unser Sonnensystem besteht nicht nur aus einem Stern und acht Planeten. Da gibt es noch die Zwergplaneten und über das ganze System verteilt jede Menge Asteroidengürtel. Den ganzen Kleinkram darf man natürlich nicht ignorieren; er spielt durchaus eine wichtige Rolle. Unser eigenes Planetensystem ist bis jetzt das einzige, von dem wir ein halbwegs vollständiges Bild haben. Natürlich kennen wir auch schon hunderte extrasolare Planetensysteme; kennen dort aber meistens nur einen einzigen Planeten. Extrasolare Zwergplaneten oder extrasolare Asteroiden und Kometen zu finden, ist schwer. Zumindest wenn man sie auf die gleiche Art und Weise finden will, wie man das hier auf der Erde tut.
Ein einzelner Felsbrocken der nur wenige Kilometer groß ist und einen fernen Stern umkreist kann selbst mit den besten Teleskopen nicht nachgewiesen werden. Aber wenn sehr viele Asteroiden oder Kometen gemeinsam einen Stern umkreisen und dabei miteinander zusammenstoßen, dann erzeugen sie Staub. Dieser Staub wird vom Licht des Sterns angestrahlt, aufgeheizt und gibt diese Wärme dann wieder ab. Beobachtet man so einen Stern, dann wird man von ihm mehr Wärmestrahlung, also Infrarotlicht, empfangen, als man eigentlich erwarten würde. So etwas nennt man “Infrarot-Exzess” und auf diese Art haben Astronomen schon viele Staubscheiben um andere Sterne entdeckt. Und dadurch auf indirekte Art und Weise auch jede Menge extrasolare Asteroiden und Kometen – denn irgendwo muss der Staub ja her kommen. Natürlich könnte es sich auch noch um eine primordiale Staubscheibe halten, also den Staub, aus dem Planeten und Asteroiden ursprünglich erst entstehen. Aber zwischen solchen Staubscheiben und den “Trümmerscheiben” (debris disks) kann man unterscheiden; zum Beispiel in dem man das Alter des Sterns berücksichtigt.
Besonders gut für die Wissenschaftler ist es, wenn sie nicht nur den Infrarot-Exzess messen, sondern die Trümmerscheibe direkt sehen können. Das gelang das erste Mal im Jahr 1984 beim Stern Beta Pictoris und seitdem hat man immer mehr Bilder auch von anderen Sternen gesammelt. In den letzten Jahren hat das Weltraumteleskop Herschel viel dazu beigetragen. Denn um die Staubscheiben sehen zu können, muss man im Infrarotlicht beobachten und Herschel ist dafür besonders gut geeignet.
Noch schöner wird es, wenn man um einen Stern sowohl Planeten als auch eine Trümmerscheibe findet. Denn dann kann man die Interaktionen und Zusammenhänge zwischen diesen beiden Komponenten untersuchen und jede Menge interessante Dinge finden. Zum Beispiel noch mehr Planeten. Herschel hat nun kürzlich zwei sehr interessante Trümmerscheiben-Planetensysteme beobachtet – und die Wissenschaftler sind zu interessanten Schlussfolgerungen gekommen.
Um den Stern Gliese 581 kreisen 4 bis 6 Planeten (ein paar davon wirklich interessant). Und er hat eine große Trümmerscheibe. So sieht sie aus:
Das Bild zeigt die Infrarotstrahlung die aus der Gegend um den Stern empfangen wird; darüber gelegt sieht man schematisch die Position der Planetenbahnen und des Kleinkörpergürtels. Die Planeten sind alle sehr nahe an ihrem Stern. Keiner ist weiter als 0,22 Astronomische Einheiten (AE) entfernt. Zum Vergleich: Die Erde ist von der Sonne eine Astronomische Einheit weit weg. Gliese 581 ist aber auch ein viel kleinerer und leuchtschwächerer Stern als die Sonne (es handelt sich um einen kühlen M-Zwerg mit einem Drittel der Sonnenmasse). Der Gürtel aus Kleinkörpern erstreckt sich zwischen 25 und 60 AE und ist mit unserem Kuipergürtel vergleichbar, der hinter der Bahn von Neptun bei etwa 30 AE beginnt.
Der Stern 61 Virginis ist dagegen der Sonne sehr ähnlich. Er wird von 2 oder 3 Planeten umkreist, die sich ebenfalls alle enorm nahe – innerhalb eines Abstands von 0,5 AE – am Stern befinden. Die Trümmerscheibe die ihn umgibt ist enorm groß und erstreckt sich von 30 bis circa 100 AE:
Das besondere bei beiden Systemen: Alle Planeten sind sogenannten “Supererden”, mit Massen zwischen 2 und 18 Erdmassen. Also keine großen, jupiterähnlichen Gasriesen. Und es scheint sich ein interessanter Zusammenhang abzuzeichnen. Je weniger große Planeten ein System enthält, desto größer ist die Trümmerscheibe. Astronom Mark Wyatt und seine Kollegen haben sich die Sache mal genauer angesehen. Von den 60 sonnennächsten Sternen vom G-Typ (also den Sternen mit der gleichen Spektralklasse wie der Sonne) haben 11 Sterne eigene Planeten. Bei fünf davon gibt es jupiterähnliche Gasriesen, sechs haben nur kleine Planeten. Und vier von diesen sechs Systemen hatten auch Trümmerscheiben. Im Gegensatz zu den Systemen mit Gasriesen, bei denen keinen Trümmerscheiben gefunden werden konnten.
Jean-François Lestrade von der Sternwarte in Paris und seine Kollegen haben sich die kleinen M-Sterne und ihre Trümmerscheiben im Detail angesehen. In ihrer Datenbank fanden sich drei M-Sterne mit Planeten und Gliese 581 war der einzige mit einer Trümmerscheibe. Die anderen beiden hatten keine, dafür aber große Gasriesen.
Natürlich sind das noch nicht ausreichend Daten für eine gute Statistik. Aber es scheint sowohl bei den sonnenähnlichen G-Sternen als auch bei den M-Sternen so zu sein, dass große und massereiche Trümmerscheiben nur in Systemen ohne Gasriesen existieren können. Auch in unserem Sonnensystem geht man davon aus, dass der Kuipergürtel früher viel größer war. Aber Jupiter und Saturn haben viele der dortigen Kleinkörper in der Frühzeit des Sonnensystems durch ihren gravitativen Einfluss aus dem System geworfen.
Sollte der Zusammenhang zwischen Trümmerscheiben und Gasriesen tatsächlich real sein, dann bietet das viel Material für zukünftige Forschung. Wie genau wirkt sich so ein großes Reservoir an Asteroiden und Kometen auf die restlichen Planeten aus? Nachdem Jupiter und Saturn im frühen Sonnensystem aufgeräumt hatten, war es danach relativ ruhig und es kam nur noch ab und zu zu Kollisionen zwischen Asteroiden und den inneren Planeten. Bei Gliese 581 und 61 Virginis könnten aber seit Milliarden Jahren ständig Asteroiden und Kometen aus der Trümmerscheibe auf die Planeten herabregnen – und so zum Beispiel sehr viel Wasser auf die Planeten in die habitable Zone von Gliese 581 gebracht haben (vielleicht gibt es dort ja tatsächlich einen Ozeanplaneten).
Es hat lange gedauert, bis wir ausreichend viele extrasolare Planeten entdeckt hatten, um zu verstehen, ob unser Sonnensystem ein Spezialfall oder normal ist und wie wir im Vergleich mit dem Rest der Galaxis da stehen. Wir haben eigentlich gerade erst angefangen, die extrasolaren Planeten zu verstehen. Und es wird noch sehr lange dauern, bis wir auch den Rest der Planetensysteme verstehen und wissen, wie Asteroidengürtel, Kometen und der ganze Rest funktionieren. Aber der Anfang ist immerhin schon mal gemacht!
Kommentare (11)