Am Himmel unserer Erde sieht die Sonne eigentlich immer gleich aus. Sie leuchtet vor sich hin und daran ändert sich nicht viel (sie wird zwar langsam immer heller, aber dieser Effekt lässt sich nur im Laufe von Jahrmillionen beobachten). Erst wenn man genauer hin sieht, zeigt sich, dass die Sonne keine große, konstant leuchtende “Glühbirne” am Himmel ist, sondern ein chaotischer, brodelnder Haufen aus heißem Plasma. Ein chaotischer, brodelnder Haufen aus heißem Plasma, bei dem es immer wieder Mal zu großen Explosionen kommt. Diese Flares können ziemlich heftig werden und dann durchaus auch Einfluss auf die Erde haben – aber normalerweise kriegen wir davon am Erdboden wenig mit. Ein kürzlich von Astronomen beobachteter Stern hat sich aber als ein ganz anderes Kaliber herausgestellt. Dort wurde eine Explosion registriert, die zehntausend Mal stärker war als alles, was unsere Sonne je zustande gebracht hat.
Der Stern heißt DG Canum Venaticorum (DG CVn) und befindet sich 60 Lichjahre weit weg in Richtung des eher unbekannten Sternbilds der Jagdhunde). Beobachtet wurde er mit dem NASA-Teleskop Swift. Es dient eigentlich dazu, Gammablitze zu registrieren. Über diese größten kosmischen Explosionen habe ich früher schon mehr geschrieben (siehe hier: Teil 1, Teil 2); sie entstehen, wenn ein großer Stern sein Leben explosiv beendet. Bei so einer Hypernova wird der gesamte Stern zerstört und leuchtet dabei kurzfristig heller als eine ganze Galaxie. Aber mit dem, was man am 23. April 2014 bei DG Cvn beobachtet hatte, hatten die Wissenschaftler nicht gerechnet. Sie hatten nicht einmal damit gerechnet, dass dieser Stern überhaupt ein lohnendes Ziel für Swifts Beobachtungen wäre. Dann aber hat das “Burst Alert Telescope (BAT)” von Swift dort einen Ausbruch von Gammastrahlung detektiert und die automatisierten Routinen des Satelliten schlugen Alarm. Die Kameras der wissenschaftlichen Instrumente wurden nun auf DG CVn gerichtet und sammelten Daten (“Swift Detection of a Superflare from DG CVn”). Daten, die überraschend waren…
Man sah keinen explodierenden Stern, sondern einen schon bekannten Himmelskörper, der plötzlich enorm hell aufleuchtete. Und drei Stunden nach dieser ersten Explosion folgte eine zweite, die mindestens ebenso hell war. In den nächsten 20 Tagen kam es bei DG CVn immer wieder zu großen Explosionen, bevor sich der Stern wieder beruhigt hatte. Man hatte diesmal nicht den Tod eines Sterns beobachtet, sondern seine Flares. Die waren aber deutlich stärker als man es von der Sonne gewohnt war. Sonnenstürme klassifiziert man mit einer Skala auf der die Stürme der Klasse X die stärksten Explosionen hervorrufen. Eine Zahl hinter dem X gibt die Intensität genauer an und der größte bisher beobachtete Flare auf der Sonne lag bei X45. Das, was man auf DG CVn beobachtet hatte, war aber ungefähr X100000…
Man könnte nun denken, dass so eine gigantische Explosion nur auf einem entsprechend gigantischen Stern stattfinden kann. Aber das Gegenteil ist der Fall: Bei DG CVn handelt es sich um einen roten Zwergstern (eigentlich ein Doppelstern). Seine Masse beträgt ein Drittel der Sonnenmasse, sein Durchmesser ein Drittel des Sonnendurchmessers und seine Leuchtkraft (normalerweise) nur ein Hundertstel der Sonnenleuchtkraft. Aber genau diese Eigenschaften machen den roten Zwergstern zu einem guten Kandidaten für große Flares.
Die Aktivität der Sonne habe ich früher schon ausführlich erklärt. Kurz zusammengefasst entsteht sie durch die Bewegung des Sonnenplasmas und dessen elektromagnetische Eigenschaften. Die Teilchen des Plasmas sind elektromagnetisch geladen und werden daher von den solaren Magnetfeldern beeinflusst. Die solaren Magnetfelder wiederum entstehen durch die Bewegung des geladenen Plasmas. Und die oberen Schichten der Sonne sind durch die Konvektion ständig in Bewegung: Kaltes Material an der Oberfläche sinkt ab und warmes von weiter unten steigt auf. Insgesamt entsteht so ein fürchterliches Kuddel-Muddel aus herumwirbelnden Plasma, das die Magnetfelder entsprechend chaotisch mit sich zieht. Sind die Magnetfelder zu stark verdreht und durcheinander, kommt es zu einem “Kurzschluss” und die in den Feldern gespeicherte Energie wird freigesetzt. Eine Explosion und ein Flare sind die Folge.
Das passiert im Prinzip auch bei dem kleinen roten Zwergstern DG CVn. Nur dass hier im Gegensatz zur Sonne nicht nur die obersten Schichten durch Konvektion in Bewegung sind, sondern der gesamte Stern. Das ganze Plasma des Sterns ist hier in Bewegung, bis hinunter zum Kern. Außerdem ist DG CVn noch recht jung und rotiert sehr schnell: Er braucht für eine Drehung knapp einen Tag (wohingegen die Sonne gut einen Monat für eine Rotation braucht). All diese Dynamik sorgt dafür, dass wesentlich mehr Energie in den Magnetfeldern von DG CVn gespeichert werden kann als bei unserer Sonne. Und wenn es dann zum Kurzschluss kommt, sind die Folgen dementsprechend größer…
In diesem Video erklären die Forscher nochmal selbst, was sie entdeckt haben und man kann die Beobachtungsdaten und schöne Animationen sehen:
Angst brauchen wir davor übrigens keine haben. Der Stern befindet sich ja 60 Lichtjahre weit weg und das ist mehr als ausreichend. Selbst ein viel näherer Stern könnte uns mit seinen Eruptionen nicht gefährlich werden. Aber es lohnt sich trotzdem, diese Mega-Explosionen zu untersuchen. Rote Zwerge wie DG CVn gelten als gute Kandidaten für die Suche nach Exoplaneten. Da sie so klein und leuchtschwach sind, lassen sich etwaige Planeten die sie umkreisen, gut entdecken. Rote Zwerge haben auch eine extrem lange Lebensdauer und können viele Milliarden Jahre länger existieren als größere Sterne wie unsere Sonne. Leben hätte dort also ausreichend Zeit um sich zu entwickeln – entsprechende Planeten müssten ihrem Stern aber auch viel näher sein als bei uns, da die Leuchtkraft der roten Zwerge ja auch deutlich geringer ist.
Ein Planet, der DG CVn in geringem Abstand umkreisen würde, wäre von diesem Megaflare vermutlich nicht recht begeistert gewesen. Beziehungsweise dessen potentielle Bewohner, deren ebenso potentielle Zivilisation den Aktivitätsausbruch vermutlich nicht überstanden hätte. Wenn wir verstehen wollen, wie gut die Chancen sind, irgendwo dort draußen außerirdisches Leben zu entdecken, dann lohnt es sich, mehr über die Gefahren zu lernen, die im Weltall existieren…
Kommentare (30)