Nächstes Jahr wird die Raumsonde “New Horizons” an Pluto vorbeifliegen und wir werden das erste Mal detaillierte Bilder von der Oberfläche dieses Himmelskörpers zu sehen bekommen. Das wird ein spektakuläres Ereignis werden und eines, das vermutlich großes Interesse bei der Öffentlichkeit hervorrufen wird. Immerhin ist Pluto der einzige große Körper im Sonnensystem, von dem wir noch kein vernünftiges Bild haben, obwohl wir von seiner Existenz schon seit fast 100 Jahren wissen. Aber natürlich macht man eine schwierige und komplizierte Mission wie “New Horizons” nicht nur, um schöne Bilder zu kriegen. Man will vor allem Wissenschaft treiben und schon jetzt machen sich die Forscher Gedanken, was sie von den Resultaten erwarten können. Ein wichtiges Thema wird die Altersbestimmung von Plutos Oberfläche sein – aber hier könnte man auf Probleme stoßen, wie drei Astronomen vom Southwest Research Institute in Colorado zeigen (“On the Roles of Escape Erosion and the Relaxation of Craters on Pluto”).
Zu wissen, wie alt die Oberfläche eines Himmelskörpers ist, ist wichtig für ein umfassendes Verständnis der Prozesse, die dort ablaufen und in der Vergangenheit abgelaufen sind. Eine junge Oberfläche kann auf tektonische Aktivität hindeuten, auf Vulkanismus, auf einen unterirdischen Ozean, eine dichte Atmosphäre und andere Eigenschaften, die zu einer ständigen Erneuerung der Oberfläche führen. Ein alter, inaktiver Himmelskörper – wie zum Beispiel unser Mond – hat dagegen auch eine entsprechend alte Oberfläche. Natürlich ist es schwer, aus der Ferne das Alter von Oberflächenmaterial fremder Himmelskörper zu bestimmen. Ein wichtiges Hilfsmittel ist dabei die Untersuchung von Einschlagskratern (ich habe das hier ausführlich erklärt). Je nachdem wie viele Krater man findet und wie sie einander überlappen kann man daraus auf das Alter der Oberfläche schließen. Das möchte man natürlich auch bei Pluto versuchen. Wenn New Horizons endlich hochauflösende Bilder von diesem fernen Himmelskörper machen wird, wird man auch jede Menge Krater zu sehen bekommen und kann daraus Informationen über die Vergangenheit des Zwergplaneten ableiten.
Bei Pluto ist man aber auch aus anderen Gründen an einer Untersuchung der Krater interessiert. Denn irgendetwas muss diese Krater ja verursachen und bei Pluto sind das meistens Asteroiden aus dem Kuiper-Gürtel. Immerhin sitzt Pluto mitten drin in diesem Asteroidengürtel und ist rein astronomisch betrachtet nichts anderes als ein sehr großer Asteroid in diesem Gürtel. Da die Kuiper-Objekte alle weit entfernt sind, haben wir noch nicht allzu viele von ihnen entdeckt; zumindest dann, wenn man es mit der Anzahl der bekannten Asteroiden im näheren Hauptgürtel zwischen den Bahnen von Mars und Jupiter vergleicht. Die Wissenschaftler sind aber nicht nur an der Anzahl der Asteroiden interessiert, sondern auch an ihrer Größenverteilung: Wie viele Asteroiden einer bestimmten Größe existieren dort draußen? Diese Information würde weitreichende Rückschlüsse auf die Entstehung des Sonnensystems selbst zulassen und darauf, wie die ursprüngliche Materie aus der es entstanden ist, damals verteilt war.
Alle Asteroiden des Kuipergürtels entsprechend zu vermessen, ist viel zu aufwendig. Von der Erde aus können wir derzeit nur die größten Objekte finden, aber wesentlich zahlreicher sind natürlich die kleineren Asteroiden. Bei denen haben wir allerdings keine Chance auf Entdeckung. New Horizons wird uns aber Krater auf der Oberfläche von Pluto zeigen können, die nur einen Kilometer groß sind und die Asteroiden die solche Krater verursachen, haben einen Durchmesser von etwa 100 Metern. Aus einer Vermessung der Größe und Häufigkeit der Plutokrater erhoffen sich die Wissenschaftler also auch Informationen über die Häufigkeit kleiner Asteroiden im Kuipergürtel. Aber dabei muss man aufpassen, meinen Alan Stern vom Southwest Research Institute und seine Kollegen. Denn Pluto könnte uns ein verfälschtes Bild der Wirklichkeit zeigen…
Das liegt an Plutos Atmosphäre. Es mag vielleicht überraschend erscheinen, das ein kleiner Himmelskörper wie Pluto überhaupt eine Atmosphäre hat. Aber natürlich darf man dabei nicht an eine “Lufthülle” wie auf der Erde denken. Plutos Atmosphäre ist enorm dünn und der Druck am Boden beträgt dort nur etwa 1 Pascal; ist also mehr als hunderttausend Mal schwächer als auf der Erde. Und dann ist Plutos Oberfläche nicht nur von Eis bedeckt. Pluto besteht zu einem Großteil aus Eis! Er besitzt einen Kern aus Fels, der von einem dicken Mantel aus Wassereis bedeckt ist über den sich eine dünnere Kruste aus gefrorenem Stickstoff legt. Und dieses gefrorene Eis kann teilweise ausgasen: Es entkommen also ständig Stickstoffmoleküle (und auch Kohlemonoxid) und bilden die Atmosphäre des Pluto. Da Pluto so klein ist, kann er diese Atmosphäre aber nicht dauerhaft halten und sie entweicht langsam ins All.
Wissenschaftler schätzen, dass Pluto so im Laufe seines Lebens schon eine Schicht aus Sticktstoffeis verloren hat, die einige Kilometer dick ist. Dadurch sind aber logischerweise auch viele Krater verschwunden, die Asteroiden in dieser Eisschicht geschlagen haben. Dazu kommen die speziellen Eigenschaften von Stickstoffeis, das bei weitem nicht so fest ist, wie zum Beispiel Felsgestein. Das Eis fließt und die Krater füllen sich dort im Laufe der Zeit von selbst wieder an. Sie werden kleiner und weniger tief und täuschen so einen kleineren Einschlag vor, als tatsächlich stattgefunden hat.
Alan Stern und seine Kollegen haben all diese Effekte in ihrer Arbeit berücksichtigt und gezeigt, dass die Verteilung der Krater auf Pluto kein gutes Maß zur Bestimmung der Größenverteilung der Kuiper-Asteroiden sein kann. Das verschwindende Eis und die sich langsam wieder auffüllenden Krater verzerren das Bild zu stark. Man würde nur dann gute Informationen daraus ableiten können, wenn das Stickstoffeis nicht mehr als eine wirklich sehr dünne Schicht über dem darunterliegenden Wassereismantel ist. Aber ob das so ist, weiß man noch nicht. Glücklicherweise zeigen die Astronomen das Problem nicht nur auf, sondern liefern auch gleich eine mögliche Lösung. Denn New Horizons wird nicht nur Pluto beobachten, sondern auch seinen Mond Charon.
Charon ist kleiner als Pluto und die Beobachtungen zeigen im Gegensatz zu Pluto keine Anzeichen für eine Atmosphäre. Seine Oberfläche besteht vermutlich auch hauptsächlich aus Wassereis und nicht aus Stickstoffeis wie bei Pluto. Es gibt dort also keine Erosion durch atmosphärisches Ausgasen und es ist auch nicht damit zu rechnen, dass fließendes Eis die Krater wieder auffüllt. Die Krater auf Charon geben also (hoffentlich) ein unverfälschtes Bild der im Laufe der Zeit stattgefundenen Einschläge wieder. Vergleicht man die Verteilung der Krater auf Charon mit der auf Pluto, kann man herausfinden, wie die Größenverteilung der Kuipergürtel-Asteroiden wirklich aussieht und aus dem Ausmaß der Unterschiede auch Rückschlüsse auf die Zusammensetzung der oberen Schichten des Plutos ziehen.
Am 6. Dezember 2014 ist New Horizons aus ihrer Hibernationsphase aufgewacht. Im Juli 2015 wird sie in wenigen tausend Kilometern Entfernung an Pluto und Charon vorbeifliegen. Wir werden endlich Bilder bekommen; schöne Bilder! Aber eben nicht nur schöne Bilder, sondern auch Unmengen an wissenschaftlichen Informationen, die uns die Geschichte unseres Sonnensystems besser verstehen werden lassen!
Kommentare (20)