Ich lese gerne Bücher über die Geschichte der Astronomie. Und da stößt man natürlich sehr oft auf diverse Astronomen, über die man mehr erfahren will. Meistens findet sich dann auch irgendwo eine Biografie mit weiterführenden Informationen. Es sei denn, der Astronom ist eine Astronomin. Denn auch die findet man in der Wissenschaftsgeschichte immer wieder und sie sind leider lange nicht so prominent wie ihre männlichen Kollegen. Ich hatte eigentlich vor, das Jahr 2015 für eine monatliche Serie über Astronominnen zu nutzen und wollte eigentlich für jeden Monat eine entsprechende Biografie auswählen und vorstellen. Aber leider habe ich feststellen müssen, dass es auf dem Buchmarkt sehr wenige biografische Bücher über Astronominnen gibt. Ich wollte mich ursprünglich auf deutschsprachige Ausgaben, die im normalen Handel erhältlich sind beschränken – aber nach ein wenig Recherche war ich froh, wenn ich überhaupt Bücher gefunden habe! Ich hoffe, es reicht am Ende für eine monatliche Serie; ein paar Bücher konnte ich dann doch noch auftreiben. Aber wenn ihr noch entsprechende Vorschläge habt, dann sagt bitte Bescheid!

In den bisherigen Artikeln dieser Serie habe ich schon über zwei wichtige Astronominnen aus dem 19. Jahrhundert geschrieben: Maria Mitchell und Annie Jump Cannon. Henrietta Swan Leavitt, um die es heute gehen soll, hat ihre wichtigste Arbeit zwar im frühen 20. Jahrhundert erledigt, steht aber trotzdem in der Tradition ihrer Vorgängerinnen. Sie war auch eine Zeitgenossin von Annie Jump Cannon und gehörte so wie sie zu den Frauen, die an der Harvard-Sternwarte an der Auswertung astronomischer Daten arbeiteten. Ursprünglich eingestellt weil man mit der Beschäftigung von Frauen Geld sparen konnte, haben sich die Astronominnen durch fundamentale Erkenntnisse über das Universum hervorgetan. Und kaum etwas konnte fundamentaler sein, als die berühmteste Entdeckung Leavitt: Denn dank ihrer Arbeit war es erstmals möglich, die wahren Ausmaße des Kosmos zu verstehen!

Henrietta Swan Leavitt

Henrietta Swan Leavitt

So wie bei ihren Kolleginnen existiert auch über Henriette Swan Leavitt kaum biografisches Material. Zumindest nicht so viel, wie es ihrer wissenschaftlichen Bedeutung angemessen wäre. Ohne die Arbeit von Henrietta Swan Leavitt hätte später der heute viel berühmtere Edwin Hubble seine revolutionären Entdeckungen nicht machen können. Er hätte den Abstand zum Andromedanebel nicht messen und herausfinden können, dass es sich dabei um eine eigene Galaxie handelt und das Universum sehr viel größer ist, als man bisher dachte. Er hätte danach auch nicht herausfinden können, dass das Universum expandiert und somit die Grundlage für die moderne Urknalltheorie legen können. Ohne Henrietta Leavitts Erkenntnisse wären viele der folgenden Entwicklungen nicht möglich gewesen, denn sie zeigte uns, wie wir auch große Entfernungen im Weltall messen können. Wenn Astronomen der Gegenwart Pressemitteilung veröffentlichen, die Titel wie “Die genaueste Vermessung des Universums aller Zeiten” tragen, dann hat war es Leavitt die dafür im Jahr 1912 die Grundlagen gelegt hat. In einer wissenschaftlichen Arbeit mit dem Titel “Periods of 25 Variable Stars in the Small Magellanic Cloud” schrieb sie damals:

“A remarkable relation between the brightness of these variables and the length of their periods will be noticed.”

Und es war tatsächlich eine “außergewöhnliche Beziehung”, die Leavitt entdeckt hatte…

Henrietta Leavitt begann ihre wissenschaftliche Arbeit am Harvard College im Jahr 1893. Sie war ein “Computer”. So bezeichnete man damals keine technischen Geräte, sondern Menschen, die mathematische Berechnungen anstellten. Und in Harvard waren das Frauen. Das war für die damalige Zeit enorm ungewöhnlich. Die erste Frau, die Edward Charles Pickering, der Direktor der Sternwarte, einstellte, war Williamina Flemming. Ursprünglich war sie die Haushälterin von Pickerung und man erzählt sich, dass er einmal so unzufrieden mit seinen männlichen Mitarbeitern war und ihnen drohte: Da kann ja meine Haushälterin bessere Arbeit leisten als ihr! Ob das wirklich der Grund war, warum er Flemming einstellte, weiß ich nicht aber sie hat definitiv für ihn gearbeitet und wurde eine hervorragende Astronomin. Ein Grund – wenn nicht vielleicht sogar der Grund – warum Pickering Frauen beschäftigte war aber definitiv der geringe Lohn, den er ihnen zahlen konnte. So wie heute immer noch wurden auch damals schon die Frauen für die gleiche Arbeit schlechter bezahlt als Männer.

1 / 2 / 3 / Auf einer Seite lesen

Kommentare (18)

  1. #1 fsdfds@fsd.de
    26. Mai 2015

    Man lernt die Geschichte der Astronomie nicht wenn man populärwissenschaftliche Bücher darüber liest. Man lernt die Geschichte wenn man alles großen paper die veröffentlicht wurden liest und versteht.

  2. #2 fsdfds@fsd.de
    26. Mai 2015

    Und zwar von Anfang der Astronomie bis heutzutage.

  3. #3 Bullet
    26. Mai 2015

    Genau wie man erst dann lesen kann, wenn man jedes mögliche Wort schon einmal vor der Nase hatte, wa?

  4. #4 PDP10
    27. Mai 2015

    @Bullet:

    Er könnte uns ja gnädigerweise mal eine Zusammenfassung von dem geben, was er da alles gelesen hat … in den ganzen Veröffentlichungen …

  5. #5 Florian Freistetter
    27. Mai 2015

    Bitte ignorieren. Das ist nur wieder der Pöbel-Troll.

  6. #6 fsdfds@fsd.de
    27. Mai 2015

    Wo hab ich gesagt das ich das alles gelesen hab? So lernt man halt nicht die Geschichte, und so viele papers sind es auch nicht. 2000 Seiten Buch lesen ist ähnlich.

  7. #7 PDP10
    27. Mai 2015

    @Florian:

    Ich weiss.
    Aber sich über ihn lustig zu machen ist trotzdem halt … lustig 🙂

  8. #8 fsdfds@fsd.de
    27. Mai 2015

    PDP10 Du machst dich hier lächerlich. Wo hab ich gesagt das ich alle Veröffentlichungen gelesen hab?

  9. #9 Florian Freistetter
    27. Mai 2015

    @PDP10: “Aber sich über ihn lustig zu machen ist trotzdem halt … lustig”

    Das Thema des Artikels finde ich aber viel zu interessant, als das man es durch Trollfütterung in den Hintergrund rücken sollte.

  10. #10 Franz
    27. Mai 2015

    Trotzdem irgendwie erschreckend, dass fast alle Entfernungsmessungen auf einer zwar wohlbegründeten, aber einzigen Schlussfolgerung aufbauen.
    Andererseits fasziniert es immer wieder wenn Menschen in scheinbar unzusammenhängenden Sachen eine Verbindung entdecken.

  11. #11 Florian Freistetter
    27. Mai 2015

    @Franz: “Trotzdem irgendwie erschreckend, dass fast alle Entfernungsmessungen auf einer zwar wohlbegründeten, aber einzigen Schlussfolgerung aufbauen.”

    So ist das auch nicht – Es gibt mehrere Methoden, die alle gegeneinander kalibriert werden. Das hängt also nicht nur an einer Idee.

  12. #12 Eisentor
    27. Mai 2015

    Vielen Dank (nochmal) für diese Artikel Serie..

  13. #13 Franz
    27. Mai 2015

    @FF
    Paralaxmessung und ?

  14. #14 Frantischek
    27. Mai 2015

    Franz:
    Parallaxenmessungen, Periodendauer von veränderlichen Sternen, wie im Artikel beschrieben, scheinbare Helligkeit von 1A Supernovas, Messungen der kosmischen Rotverschiebung…

  15. #15 Florian Freistetter
    27. Mai 2015

    @Franz: Es geht los mit Radarmessungen, dann kommt die Parallaxe, die spektroskopische Parallaxe, die dynamische Parallaxe, die Tully-Fisher-Beziehung, die Faber-Jackson-Beziehung, die Rotverschiebung, etc. Dann gibts noch Sternstromparallaxen, FH-Diagramme bei Kugelsternhaufen, usw. (siehe auch die Folgen 19 bis 21 der Sternengeschichten)

  16. #17 Von Miller
    22. November 2016

    Funfact: Auf dem zweiten Foto mit den weiblichen “Computern” sieht man im Hintergrund ein Bild im Zimmer hängen. Darauf ist der Helligkeitsverlauf des Sterns Beta Aurigae abgezeichnet, ein Bedeckungsveränderlicher Stern. Passt also ganz gut zur Entdeckung Leavitts.
    (Hier ist das Foto höher aufgelöst: https://en.wikipedia.org/wiki/Harvard_Computers

  17. […] Henrietta Swan Leavitt entdeckte 1912, dass die Helligkeit der δ-Cephei-Veränderlichen (deren Prototyp der unglücklicherweise fast 900 Lichtjahre entfernte Stern δ im Kepheus ist) mit ihrer Pulsationsdauer verknüpft ist. Sie wies das an Cepheiden in der Großen Magellanschen Wolke nach, einer Satellitengalaxie der Milchstraße deren Entfernung unbekannt war, aber immerhin waren die Cepheiden dort alle fast gleich weit entfernt und konnten direkt verglichen werden. 1913 konnte Ejnar Hertzsprung dann die Entfernung einiger näherer Cepheiden bestimmen und so die Beziehung zwischen Periode und scheinbarer Helligkeit zu einer zwischen Periode und Leuchtkraft machen. Damit kannte man sofort die Entfernung der Großen Magellanschen Wolke und der sogar die Entfernung der Andromeda-Galaxie konnte mit 900.000 Lichtjahren erstmals bestimmt werden. Man konnte sogar die Entfernungen von Galaxien bis zu 10 Millionen Lichtjahren mit den hellen Cepheiden messen und so gelang der Nachweis, dass sich das Weltall ausdehnt. Die Werte für die Hubble-Konstante waren jedoch lange um einen Faktor 2 unsicher – irgendwo zwischen 50 und 100 km/s/Mpc musste der Wert liegen (noch bis Anfang der 1990er wusste man es nicht besser). Leider waren im Radius der vom Erdboden aus messbaren Fixsternparallaxen nur wenige Cepheiden, und so bemerkte man erst in den 1950ern dass es zwei Grundtypen von Cepheiden gibt, die sich bei gleicher Periodendauer um 1,6 Größenklassen unterscheiden, woraufhin sich die mit Cepheiden bestimmten Entfernungen schlagartig auf mehr als das Doppelte vergrößerten. […]