Dieser Artikel ist Teil einer fortlaufenden Besprechung des Buchs “Die perfekte Theorie: Das Jahrhundert der Genies und der Kampf um die Relativitätstheorie”* (im Original “The Perfect Theory: A Century of Geniuses and the Battle over General Relativity”* von Pedro Ferreira. Jeder Artikel dieser Serie beschäftigt sich mit einem anderen Kapitel des Buchs. Eine Übersicht über alle bisher erschienenen Artikel findet man hier
——————————————————-
Im ersten Kapitel des Buchs haben wir erfahren, was eigentlich das allgemeine an der Allgemeinen Relativitätstheorie ist und wie Albert Einstein überhaupt auf die Idee kam, sie zu entwickeln. Im zweiten Kapitel hat Einstein dann mühsamer Rechnerei endlich herausgefunden, wie er diese Theorie formulieren kann. Das dritte Kapitel hat gezeigt, dass wir aus der allgemeinen Relativitätstheorie überraschend viel über die Entstehung des Universums lernen können. Kapitel 4 hat erklärt, dass man aus ihr auch faszinierende Erkenntnisse über sterbende Sterne erhalten kann. In Kapitel 5 ging es um Einsteins Gegner und die zweifelten in Kapitel 6 sogar den Urknall an; den größten Erfolg der Relativitätstheorie. In Kapitel 7 erzählt Ferreira wie die Relativitätstheorie langsam wieder an Fahrt aufnahm und sich nun auch die Astrophysiker mit ihr beschäftigten mussten und Kapitel 8 zeigte, dass das eine gute Idee war, denn die komischen Phänomene die Einsteins Theorie vorhersagte, schienen im Kosmos tatsächlich zu existieren.
Jetzt machten sich die Wissenschaftler mit neuem Schwung an die Arbeit mit der Allgemeinen Relativitätstheorie. Die Quantenmechanik hatte in den vergangenen Jahren gezeigt, dass sie ein ziemlich mächtiges Theoriegebäude war um die Welt beschreiben zu können. Nun versuchte man erneut, das zu erreichen, an dem schon Einstein selbst gescheitert war: Die Relativitätstheorie mit dem Rest der theoretischen Physik zu vereinen.
Der erste, dem ein wichtiger Schritt in die richtige Richtung gelang, war Paul Dirac. Der berühmte Physiker (ich empfehle euch dringend, die tolle Biografie zu lesen, die Graham Farmelo über ihn geschrieben hat: “The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius: The Life of Paul Dirac”*). Er schuf die Dirac-Gleichung mit der sich Elektronen und Quarks beschreiben ließen und zwar unter Berücksichtigung von Einsteins spezieller Relativitätstheorie. Simpel gesagt hatte Dirac Quantenmechanik und spezielle Relativitätstheorie vereint und wie gut seine Arbeit war zeigte sich, als ein Teilchen, dessen Existenz seine Gleichung vorhersagte tatsächlich entdeckt wurde: Das Positron, das gleichzeitig auch das erste Anti-Teilchen war, das man nachweisen konnte.
Diracs Theorie beschrieb Teilchen. Aber was war mit den Kräften? Was war mit dem Elektromagnetismus? Hier machten Richard Feynman, Julian Schwinger und Sin-Itiro Tomonaga (die genau so wie Dirac alle den Nobelpreis erhalten sollten) die nächsten Fortschritte. Sie entwickelten die Quantenelektrodynamik (QED), eine einheitliche Beschreibung von Elektronen und Photonen, also eine Theorie von Teilchen und Kräften. Paul Dirac war von der QED allerdings nicht so begeistert, weil er die dort verwendete Methode der Renormierung als unelegant und mathematisch zweifelhaft betrachtete. Die Renormierung war aber nötig – ohne sie machte die Theorie unsinnige Vorhersagen, die nicht mit den Beobachtungen übereinstimmten.
Als nächstes probierte man die schwache und die starke Kernkraft in eine umfassende Theorie zu inkludieren. Diese beiden Kräften wirken innerhalb der Atome und sorgen für deren Zusammenhalt bzw. Zerfall. Steven Weinberg und Abdus Salam gelang es in den 1960er Jahren die elektromagnetische und die schwache Kraft mit einer gemeinsamen Theorie zu beschreiben und ein paar Jahre später konnte man auch zeigen, dass sowohl die Theorien zur Beschreibung der schwachen als auch die der starken Kraft ebenfalls mit der Methode der Renormierung bearbeitet werden konnten und es somit prinzipiell möglich sein musste, alle drei Kräfte mit einer einzigen “Grand Unified Theorie (GUT)”, also einer großen vereinheitlichten Theorie zu beschreiben (auch wenn das im Detail bis heute noch nicht gelungen ist).
Kommentare (11)