Ich werde oft um Rat gefragt, wenn es darum geht, ein passendes Teleskop zu kaufen. Leider kann ich da wenig weiterhelfen. Ich bin zwar Astronom, aber war selbst nie ein Hobby-Astronom und habe auch nie selbst ein Teleskop besessen. Meine berufliche Erfahrung mit der beobachtenden Astronomie beschränkt sich auf die Arbeit mit professionellen Großteleskopen an Sternwarten und da laufen die Dinge ganz anders, als bei der privaten Hobby-Astronomie. Außerdem ist es enorm schwierig, allgemeine Hinweise zum Teleskop-Kauf zu geben. Es kommt dabei sehr stark darauf an, wie viel Geld man ausgeben will; was man beobachten möchte; wo man beobachten möchte; ob man mobil bleiben oder sich eine eigene kleine Sternwarte einrichten will – und so weiter. Ich verweise daher meistens immer auf eine ausführliche und persönliche Beratung im Fachhandel. Damit man sich aber trotzdem voran schon ein wenig informieren kann, hat Blog-Leser Alderamin netterweise eine sehr ausführlichen Gastbeitrag in fünf Teilen verfasst, der in den nächsten Tagen hier im Blog veröffentlicht wird. Gestern gab es den ersten Teil, heute geht es weiter mit Teil 2.
————————————————————–
Mein erstes Teleskop – Teil 2
Nachdem wir im Teil 1 erfahren haben, was das Amateurteleskop zeigt bzw. nicht zeigt, nun ein paar theoretische Grundlagen, um zu verstehen, was die Leistung des Teleskops bestimmt.
Leistungsparameter – worauf kommt es an?
Billige Kaufhausteleskope prahlen oft mit ihrer Vergrößerung. Die Vergrößerung alleine sagt aber gar nichts über die Qualität des Teleskops aus, man kann sie beliebig hoch treiben, wird in kleinen Teleskopen dann allerdings nicht viel sehen, und ohnehin gilt ob der zuvor genannten Mannigfaltigkeit der Himmelsobjekte nicht, dass mehr Vergrößerung immer besser sein muss, im Gegenteil. Lichtschwache Objekte erfordern geringere Vergrößerungen als Planeten oder der Mond, und manche Sternhaufen sind so groß, dass sie ein großes Blickfeld benötigen.
Der wichtigste Leistungsparameter eines Teleskops ist seine Öffnung, d.h. der Durchmesser des Objektivs, das ist die vordere, große Linse (oder der große Spiegel beim Spiegelteleskop). Je größer das Objektiv, desto mehr Licht sammelt das Teleskop, umso lichtschwächere Objekte kann man erkennen. Die Lichtstärke des Teleskops wird als Grenzgröße angegeben, womit die theoretisch schwächste Größenklasse eines gerade noch zu erkennenden Sterns gemeint ist. Größenklassen von Sternen sind mit dem Faktor 100,4 = 2,512… gestaffelt. Das ist die fünfte Wurzel aus 100: fünf Größenklassen Helligkeitsunterschied bedeuten einen Faktor von exakt 105•0,4 = 102 = 100. Ein kleinerer Wert für die Größenklasse bedeutet hierbei eine größere Helligkeit. Die hellsten Fixsterne (Wega, Capella, Arktur) haben 0. Größe (auch 0m geschrieben (m für Magnitude), Sirius die negative Größe -1,6m, die Sterne des Orions etwa 1m, die des Großen Wagens 2m und die schwächsten mit bloßem Auge noch sichtbaren haben ca. 6m. Auf diese Grenzgröße des bloßen Auges und einen theoretischen dunkeladaptierten Pupillendurchmesser von 7 mm ist die Grenzgröße des Teleskops bezogen. Ein Teleskop hat eine Grenzgröße von
Grenzgröße = 2,5m • log10 ( (Öffnung [mm] / 7 mm) 2) + 6m
= 2,5m • 2 log10 (Öffnung [mm] / 7 mm) + 6m
= 5m • log10 (Öffnung [mm] / 7 mm) + 6m
Denn es sammelt das (Öffnung/7 mm) 2-fache an Licht im Vergleich zum bloßen Auge. Dieser Faktor umgerechnet in Größenklassen ergibt den Gewinn, der gegenüber der mit bloßem Auge erreichten 6. Größe erzielt werden kann.
Gleichzeitig bestimmt der Durchmesser das Auflösungsvermögen des Teleskops. Die begrenzte Öffnung des Teleskops (auch wenn sie sehr groß erscheint) wirkt wie ein optischer Spalt, der für eine punktförmige Lichtquelle eine Beugungsfigur verursacht, eine kleine Scheibe im Zentrum, umgeben von konzentrischen Ringen. Man sieht sie bei sehr hoher Vergrößerung von Sternen. Jeder Bildpunkt eines Objekts erzeugt ein solches Beugungsbild und diese überlappen sich bei flächigen Objekten wie Mond oder Planeten und verursachen eine Bildunschärfe.
Kommentare (17)