Eine andere Definition ist zum Beispiel die der Geschwindigkeit: Die Geschwindigkeit gibt an, wie sich der Ort mit der Zeit ändert (ist die Geschwindigkeit Null, bleibt ihr am Ort, je schneller ihr seid, desto schneller seid ihr woanders). In Formeln schreibt man v für die Geschwindigkeit, und die Änderung des Ortes x mit der Zeit schreibt man dann so:
Solche Gleichungen sind also “echte” Gleichungen – aber letztlich sind es nur Namens-Definitionen, mit denen allein kann man keine Physik betreiben, denn man kann ja letztlich alles definieren, wie man möchte. Aber das tut man natürlich nicht – man definiert bevorzugt solche Größen, die auch sinnvoll sind. Beispielsweise ist die Beschleunigung die Änderung der Geschwindigkeit mit der Zeit, das schreibt man (a ist die Beschleunigung – denkt an “acceleration”)
Diese Formel werdet ihr in vielen Physikbüchern finden. Aber manchmal ändert sich ja auch die Beschleunigung, beispielsweise, wenn ihr das Gaspedal durchtretet oder ganz umweltfreundlich stärker in die Pedale strampelt. Warum also nicht die Beschleunigungsänderung b definieren:
?
Diese Formel werdet ihr so in keinem Buch finden – der Grund ist einfach der, dass die Änderung der Beschleunigung keine besonders interessante Größe ist, wenn man Physik betreibt – sie taucht nur in sehr wenigen Gleichungen auf (der einzige Fall, an den ich mich im Moment erinnere, ist die Berechnung der Energie einer bewegten Ladung, wer will, kann das in den Feynman Lectures, Band II Kap. 28 nachlesen.).
Selbst solche Definitionsgleichungen enthalten also Physik – weil man eben nur das definiert, was auch als physikalisches Konzept sinnvoll ist. Aber die meisten Gleichungen in der Physik sind anderer Art.
Gesetze und Definitionen
In der Schule habt ihr vermutlich einige Gleichungen kennengelernt, die man als “Gesetze” bezeichnet. (Entgegen weit verbreiteter Ansicht sind “Gesetze” nicht die höchste Form der physikalischen Erkenntnis, sondern meist einfache Beziehungen zwischen Größen – gemeint ist eher “Gesetzmäßigkeit”.) Ein Beispiel ist das Ohmsche Gesetz: Der Widerstand eines elektrischen Verbrauchers (beispielsweise einer Glühlampe) ist gleich Spannung geteilt durch Stromstärke: R=U/I.
Vielleicht hat es euch verwirrt, dass oft gleichzeitig gesagt wird: “Der Widerstand ist definiert als Quotient aus Spannung und Stromstärke”. Ist R=U/I nun bloß eine Definition für das Kürzel R oder ein physikalisches Gesetz?
Beides ist richtig. Messt ihr an einer Glühlampe den Strom, wenn ihr verschiedene Spannungen anlegt (Profi-Tipp: Wenn ihr ein Multimeter parallel zur Glühlampe geschaltet habt, um die Spannung zu messen, dann nicht einfach auf Strom-Messung umschalten – damit habe ich mal im Elektronik-Praktikum einen Schutzwiderstand zum Verglühen gebracht und meinen Ruf als Theoretiker bereits im 2. Studiensemester endgültig festgelegt…), dann werdet ihr feststellen, dass Spannung und Strom zueinander proportional sind. Das ist also eine echte physikalische Erkenntnis, die ihr schreiben könntet als U~I (die tilde nimmt man gern als Proportionalitätszeichen). Wenn ihr ausrechnen wollt, wie groß der Wert des Stroms bei einer bisher nicht angelegten Spannung ist, dann ist es natürlich praktisch, wenn ihr dieser Proportionalitätskonstante einen Namen gebt. Und dann bekommt ihr eben U=RI oder R=U/I.
Die Gleichung ist also sowohl eine Definition (nämlich die des Kürzels “R”) als auch eine physikalische Beobachtung. Für den Definitions-Aspekt gilt wieder, dass Definitionen nur dann sinnvoll sind, wenn sie auch eine physikalische Bedeutung hat – man könnte versuchen, die Drachizität als D=U²/I³ zu definieren, aber diese Größe hat eben keine Bedeutung und ist auch nicht für ein und dieselbe Glühlampe konstant.
Wie die meisten Gesetze hat auch das Ohmsche Gesetz einen Anwendungsbereich – es gilt nicht immer. Legt ihr große Spannungen an eure Glühlampe an, dann wird irgendwann die Proportionalität nicht mehr erfüllt sein, weil sich beispielsweise der Widerstand mit der Temperatur ändert oder weil es nicht möglich ist, beliebig große Ströme durch ein Metall zu quetschen.
Kommentare (42)