Wenn man schnelle Bewegungen auf einem Foto festhalten will, dann braucht man kurze Belichtungszeiten – handelsübliche Kameras haben meist 1/1000s im Angebot; das reicht aus, um auch schnelle Bewegungen bei Sport noch irgendwie auf den Sensor zu bekommen (vorausgesetzt, es ist hell genug). Hochgeschwindigkeitskameras schaffen auch noch deutlich höhere zeitliche Auflösungen (in einem Forschungsprojekt, an dem ich mal beteiligt war, wurden Bilder mit etwa einer Millionstel Sekunde Belichtungszeit aufgenommen, um zu gucken, was passiert, wenn man Metalle bearbeitet). Aber auch in einer Millionstel Sekunde legt Licht immerhin noch eine Strecke von knapp 300 Metern zurück – insofern sind auch diese Kameras langsam.
Aber bevor wir uns die richtig schnellen Kameras angucken, hier zur Einstimmung aufs Thema ein schickes Video eines platzenden Ballons, aufgenommen mit 1400 Bildern pro Sekunde:
(Youtube-Video von Yo Suzuki)
Schon ziemlich nett – aber wie gesagt, immer noch recht langsam.
Die zur Zeit schnellsten Kameras sind so genannte “Streak”-Kameras (auf deutsch wohl “Schlieren-Kamera” oder “Schmier-Kamera”).
[Hmmm – hier merkt der Blogger, dass er von moderner Optik und Technik nicht wirklich viel Ahnung hat. Soll man so einen Artikel wirklich schreiben, wenn man nicht genau versteht, wie diese Kamera eigentlich funktioniert? Auf der anderen Seite ist das Thema aber zu cool, als dass man nicht drüber schreiben könnte. Ach was, dass man keine Ahnung hat, kann man ja geschickt kaschieren – wird schon keiner merken…]
So eine handelsübliche Streak-Kamera verwendet einen Trick, um eine hohe Zeitauflösung hinzubekommen: Sie opfert eine Raumdimension, um das Signal in der Zeit auflösen zu können – letztlich kann man also nur eindimensionale Bilder aufnehmen (aber man kann den Prozess mehrfach wiederholen und damit doch ein 2D-Bild bekommen). Dazu wird das Licht, das aufgenommen werden soll, auf eine Photokathode geleitet. Dort kann es Elektronen herausschlagen (das ist der photoelektrische Effekt, den das Nobelpreiskommittee ausgenutzt hat, um Einstein seinen Nobelpreis zuzuschustern, ohne das Wort “Relativität”verwenden zu müssen [Rafinierter Blogger-Trick: Wenn man irgendwas nicht so ganz genau erklären will, dann einfach ein bisschen vollkommen unnötige Randinformationen einstreuen, das unterbricht den Lesefluss und keiner merkt (hoffentlich), dass das alles etwas wischi-waschi ist. Außerdem können dann alle wieder das Universal-Wissen des Bloggers bewundern…])
Das Licht trifft also auf die Photokathode und zwar – weil wir ja ein Signal in der Zeit auflösen wollen – nicht genau an allen Punkten zugleich. Das kann man ausnutzen, um die herausgeschlagenen Elektronen auseinanderzudröseln: Dazu legt man ein zeitlich sehr schnell variierendes elektrisches Feld an, so dass Elektronen, die zu unterschiedlichen Zeiten losgeschlagen wurden, unterschiedlich stark beschleunigt werden. Jetzt braucht man nur noch einen Detektor für die Elektronen (da reicht anscheinend ein normaler CCD-Chip wie in einer Kamera), und schon bekommt man ein eindimensionales Bild. Man kann das Ganze natürlich mehrfach wiederholen und damit dann aus mehreren solcher Bilder einen Film zusammensetzen – das ist wohl auch der Trick, mit dem 2011 diese Aufnahmen hier gemacht wurden:
(Visualizing Light over a Fruit with a Trillion FPS Camera, Camera Culture Group, Bawendi Lab, MIT )
Hier wurde ein Femtosekundenlaser über das Objekt geführt und dann wurden jeweils Einzelbilder gemacht und hinterher zu einem Film zusammengesetzt. [Hoffentlich habe ich das halbwegs richtig erklärt?]
[Hmm, da gucken wir ja irgendwie Licht auch schon beim Ausbreiten zu – eigentlich doof, denn das sollte ja erst mit der neuen Kamera gehen, die gleich erst kommt. Ob das wen stört?]
Auch wenn diese Bilder natürlich schick sind, sind sie trotzdem letztlich eindimensional und erst nachträglich wieder zusammengesetzt, was auch nur klappt, weil sich die Szene immer exakt wiederholen lässt. Ein echter 2D-Schnappschuss ist so nicht gelungen, insofern ist der Film also ein wenig geschummelt. [Glück gehabt, so ganz hat man Licht eben doch nicht beim Ausbreiten beobachtet…]
Kommentare (20)