Braune Zwerge sind ziemlich außergewöhnliche Himmelsobjekte. Sie sind ein wenig wie Sterne, ohne aber echte Sterne zu sein. Und sie sind ein wenig wie Planeten, ohne echte Planeten zu sein. Ein Stern erzeugt in seinem Inneren Energie und das dauerhaft für viele Millionen bis Milliarden Jahren. Damit das funktioniert muss sein Inneres heiß genug sein und das geht nur, wenn der Stern genügend Masse hat. Eine Gaskugel muss mindestens 75 Mal mehr Masse haben als der Planet Jupiter, damit das klappt. Dann kann Wasserstoff in Helium umgewandelt werden und aus der Gaskugel wird ein Stern. Eine leichtere Gaskugel kann nicht dauerhaft Energie erzeugen. Aber vielleicht ein bisschen… es kann in ihrem Inneren immer noch warm genug sein, um Deuterium (ein Isotop des Wasserstoffs) zu fusionieren. Dabei wird aber nicht so viel Energie frei und da im Universum sehr viel weniger Deuterium als Wasserstoff existiert, ist der Brennstoff nur für sehr kurze Zeit vorhanden. Ein Deuterium verbrennendes Objekt leuchtet also nur sehr schwach und das auch nur für sehr kurze Zeit. So ein Objekt nennt man “Brauner Zwerg” und er muss mindestens 13 Mal so schwer sein wie Jupiter. Erst unter dieser Grenze ist den Objekten keine Kernfusion mehr möglich und man nennt sie “Planeten”. Braune Zwerge sind also eine Art Mittelding zwischen Stern und Planet und den ersten von ihnen haben wir erst vor knapp 20 Jahren entdeckt! Es gibt hier also noch sehr viel zu erforschen und vor allem zu verstehen und dank der Arbeit von Ian Crossfield vom Max-Planck-Institut für Astronomie in Heidelberg und seinen Kollegen haben wir die braunen Zwerge nun ein bisschen besser verstanden. Denn sie haben es geschafft, eine Karte der Oberflächenstrukturen eines braunen Zwergs zu erstellen!
Natürlich reden wir hier nicht von Bergen, Ozeanen und Kontinenten. Ein brauner Zwerg ist eine große Kugel aus Gas und hat keine festen Strukturen. Die Karte um die es geht ist also keine geografische, sondern eher eine meteorologische Karte, die Wolken und Wetter zeigt. Crossfield und seine Kollegen haben in ihrer Arbeit “A Global Cloud Map of the Nearest Known Brown Dwarf” (pdf) den braunen Zwerg WISE J104915.57-531906.1B untersucht, der besser mit dem Namen Luhman 16B bezeichnet wird. Entdeckt wurde er letztes Jahr (ich habe damals berichtet) und es ist ein ganz besonderer brauner Zwerg. Erstens ist er Teil eines Doppelsystems; es handelt sich also um zwei braune Zwerge die einander umkreisen. Und zweitens ist es der braune Zwerg, der uns am nächsten ist. Luhman 16A und Luhman 16B sind nur 6,5 Lichtjahre entfernt und damit nach den Sternen des Alpha-Centauri-Systems (4,2 Lichtjahre) und Barnards Stern (6 Lichtjahre) die nächsten bekannten Himmelskörper in der Nachbarschaft der Sonne.
Trotz dieser Nähe können wir aber auch mit den besten Teleskopen nicht mehr vom braunen Zwerg sehen als einen Lichtpunkt im Teleskop. Es ist unmöglich, seine Oberfläche direkt zu sehen. Aber wenn die Astronomen etwas können, dann ist es die indirekte Beobachtung! Ihnen bleibt selten etwas anderes möglich, als sich knifflige Methoden auszudenken, mit denen sie aus den wenigen vorhandenen Daten irgendwie auf das schließen können, was sie interessiert. In diesem Fall nennt sich die Methode “Doppler Imaging”. Crossfield und seine Kollegen haben die großen Teleskope der Europäischen Südsternwarte in Chile benutzt, um sehr viele sehr genaue Spektren des braunen Zwergs aufzunehmen. Dabei sieht man nach, wie viel Licht einer bestimmten Wellenlänge vom braunen Zwerg zu uns gelangt. Die Intensität hängt unter anderem von den chemischen Elementen ab, die im braunen Zwerg zu finden sind. Jedes Element blockiert ganze bestimmte Wellenlängen des Lichts und man sieht im Spektrum dann die Spektrallinien die zu dem Element gehören.
Kommentare (23)