Der erste Vorschlag um dieses Problem zu lösen, ist die “Supersymmetrie”. Von Symmetrien haben wir ja schon im Kapitel über Schönheit und Wissenschaft gehört und sie sind in der Physik tatsächlich enorm wichtig. Bei der Supersymmetrie geht es um den Unterschied zwischen “Fermionen” und “Bosonen”, den zwei fundamental unterschiedlichen Arten von Teilchen. Simpel gesagt sind die einen die Teilchen aus denen die Materie besteht und die anderen die Teilchen, die die Kräfte vermitteln. Die Supersymmetrie besagt nun, dass jedes Fermion ein bosonisches Partnerteilchen hat und umgekehrt (ein bisschen so, wie auch jedes Teilchen ein Antiteilchen als Partner hat). Bei einer idealen Supersymmetrie wären die Massen von Teilchen und Symmetriepartner exakt gleich groß. Dann würde auch der Einfluss der ganzen virtuellen Teilchen die ständig irgendwo entstehen und vergehen durch den Einfluss der supersymmetrischen Partner exakt ausgeglichen werden und die Probleme bei der quantenmechanischen Berechnung der Teilchenmassen verschwinden. Aber die supersymmetrischen Teilchen können nicht genau gleich schwer sein, denn sonst hätten wir sie schon entdeckt. Sie müssen schwerer sein, dürfen aber auch nicht zu schwer sein, denn sonst klappt die Sache mit dem Ausgleich des Einflusses der virtuellen Teilchen nicht mehr und das Hierarchieproblem bleibt weiter ungelöst.

Die Supersymmetrie war bzw. ist neben der Suche nach dem Higgs die zweite große Aufgabe des LHC. Sehr viele Wissenschaftler waren überzeugt, dass es die Supersymmetrie geben muss und das der LHC sie finden wird. Bis jetzt ist das allerdings nicht passiert und wenn sich noch länger nichts tut, dann wird es kritisch, da man dann genau in den Bereich kommt, wo die Teilchen zu schwer sind, um als vernünftige Erklärung dienen zu können. Leichte supersymmetrische Teilchen hätte der LHC eigentlich schon finden müssen aber bis jetzt hat man nichts gesehen, was auf ihre Existenz hinweist. Ich finde die Supersymmetrie ja nicht nur an sich interessant, sondern auch, weil sie eine Erklärung für die Natur der dunklen Materie bieten könnte. Ein leichtes, stabiles supersymmetrisches Teilchen hätte genau die Eigenschaften, die auch dunkle Materie haben sollte und es wäre cool, wenn man so ein Teilchen am LHC finden könnte. Ich finde es ein wenig schade, dass Randall auf diesen Aspekt der Supersymmetrie nicht eingegangen ist…

Das zweite Modell das Randall erwähnt ist “Technicolor” und beschreibt im wesentlichen eine neue Kraft und sagt, dass Teilchen wie das Higgs nicht fundamental sind, sondern zusammengesetzt und von dieser neuen Kraft zusammengehalten werden. Auch darüber hätte ich gerne ein wenig mehr erfahren, selbst wenn dieses Modell durch Experimente schon größtenteils ausgeschlossen wurde.

Eine Technicolor-Kamera. Hat aber mit Teilchenphysik nix zu tun (Bild: Marcin Wichary, CC-BY 2.0)

Eine Technicolor-Kamera. Hat aber mit Teilchenphysik nix zu tun (Bild: CC-BY 2.0)

Am längsten beschäftigt sich Randall mit den Extradimensionen. In der Stringtheorie wird ja postuliert, dass der Raum nicht nur drei Dimensionen hat, sondern bis zu 10 und wenn sich die Gravitationskraft durch alle 10 Dimensionen ausbreitet, die anderen Kräfte aber nur in den drei, die wir sehen können, dann erklärt das, warum uns in unseren drei Dimensionen die Gravitation so schwach vorkommt. Ich finde diese Lösung ziemlich elegant, da sie sich direkt aus den Eigenschaften der Strings ableitet. Man weiß ja mittlerweile, dass man in der Stringtheorie nicht nur eindimensionale Strings sondern auch höherdimensionale “Branen” beschreiben kann. Unser Universum wäre dann zum Beispiel eine dreidimensionale Brane in einem höherdimensionalen Raum. Die Strings bewegen sich in der Brane und wenn es sich um offene Strings handelt, dann können sie die Brane nie verlassen. Sie hängen dann quasi wie Fäden an einem Flocatti-Teppich an ihr fest. Geschlossene Strings dagegen können die Brane auch verlassen und den ganzen “Überraum” durchqueren. Und da Gravitation durch geschlossene Strings beschrieben wird und der Rest der Kräfte durch offene Strings wäre so erklärt, warum die Gravitation so viel schwächer ist.

1 / 2 / 3

Kommentare (4)

  1. #1 Till
    25. April 2014

    Ich versuche mal zusammenzufassen, was ich von Randalls Branenmodell verstanden habe: Unsere Brane (wo die Gravitation schwach ist) und die Gravitationsbrane (wo die Gravitation stark ist) sind quasi der Start- und der Endpunkt einer weitere Dimension, in der die Stärke der Gravitation exponentiell abnimmt. Da die Gravitation exponentiell abnimmt, müssen die beiden Branen in dieser Richtung nur einige dutzend Planck-Längen (also ca. 10-33 m) voneinander entfernt sein um die Schwäche der Gravitation in unserer Brane zu erklären. Dieser Abstand ist so gering, dass wir ihn nicht messen können.
    Was ich nicht verstanden habe ist, warum die Gravitation in dieser Dimension exponentiell abnehmen soll und ich bin mir nicht sicher, ob Randall dafür überhaupt eine Erklärung hat oder ob sie das einfach nur deshalb so postuliert, weil das mathematisch dann alles so schön hinhaut.

    Was mir noch fehlt ist eine Erklärung, wie die Teilchen, die ja in unserer Brane festhängen dann die Gravitation in der Gravitationsbrane erzeugen.

    Es würde mich auch interessieren, ob die Krümmung der Raumzeit die aus der Relativitätstheorie rausspringt dann eine Krümmung in diese neue Dimension hinein bedeutet. Randall schreibt zwar, dass Ihre Theorie gut mit der Allgemeinen Relativitätstheorie und der Raumzeitkrümmung übereinstimmt, aber so richtig klar ist mir das nicht geworden.

  2. #2 ChristianS
    25. April 2014

    Man braucht keinen exponentiellen Abfall, um zwischen zwei sehr dicht benachbarten Punkten sehr unterschiedliche Werte zu haben, das bewirkt z. B. eine lineare Funktion genauso gut. In dieser Hinsicht fand ich die Darstellung im Buch fragwürdig.
    @Till: Randall schreibt (in der deutschen Ausgabe auf S. 362) gleich nach so einer zweifelhaften Formulierung: “Die Exponentialfunktion ist nicht aus der Luft gegriffen. Sie geht aus der singulären Lösung von Einsteins Gleichungen … hervor …”

  3. #3 stone1
    26. April 2014

    Wegen der leichten supersymmetrischen Teilchen und ob diese mit der dunklen Materie zusammenhängen, dazu gibt es ja später noch ein Kapitel, das ist wieder der fehlende rote Faden. Ich hätte mir auch gewünscht, dass das Randall-Sundrum-Modell etwas genauer beschrieben wird, der Abschnitt soll wohl dazu einladen, das andere Buch “Verborgene Universen” zu lesen, aber wenn dieses ähnlich chaotisch wie das aktuelle geschrieben ist, werde ich mir das wohl eher nicht antun, und falls das Kaluza-Klein-Graviton tatsächlich gefunden wird, wird hoffentlich jemand etwas darüber schreiben und diese Dinge verständlicher auf den Punkt bringen.

    Das was Florian über die Strings geschrieben hat (dass die Gravitation mittels geschlossener Strings über Branen hinweg wirken könnte) hab ich zum Beispiel so nicht aus den Buchzeilen herausgelesen, aber das klingt nach einer guten Erklärung.
    Ich nehme an das würde bedeuten, dass die Gravitation als einzige bekannte Kraft zwischen Branen wirken könnte? Und in der Gravitationsbrane wirken umgekehrt die anderen Kräfte gar nicht?
    Das Kapitel wirft irgendwie mehr Fragen auf, als es beantwortet. Bin schon sehr gespannt, was mit dem LHC ab nächstem Jahr gefunden werden wird, vor allem da es für die Supersymmetrie anscheinend auch schon etwas eng wird.
    Könnte es nicht auch sein, dass in den bisher gewonnen Daten schon Hinweise auf supersymmetrische Teilchen versteckt sind, man sie aber noch nicht richtig interpretieren konnte?

  4. #4 Florian Freistetter
    26. April 2014

    @stone1: “Das was Florian über die Strings geschrieben hat (dass die Gravitation mittels geschlossener Strings über Branen hinweg wirken könnte) hab ich zum Beispiel so nicht aus den Buchzeilen herausgelesen, aber das klingt nach einer guten Erklärung.”

    Das stand auch so nicht drin, soweit ich mich erinnere – ich habs nur des Verständnisses wegen geschrieben.