Dieser Artikel entstand im Rahmen meiner Arbeit für das Lindau Nobel Laureate Meeting 2015. Ich habe für das Konferenzblog einige Artikel geschrieben die ich nun hier auch in meinem Blog veröffentliche. Dieser Artikel wird daher in den nächsten Tagen auch dort erscheinen und der Vortrag auf dem er basiert ist hier online verfügbar.
————————————————————————
Harold Kroto, Nobelpreisträger für Chemie des Jahres 1996, spricht in Lindau über Astronomie. Und warum auch nicht? Immerhin steht das 65. Lindau Nobel Laureate Meeting im Zeichen der Interdisziplinarität. Chemie und Astronomie mögen vielleicht auf den ersten Blick nicht allzu viel miteinander zu tun haben. Aber auf den zweiten sehr wohl und das ist durchaus wörtlich zu nehmen. Als die Astronomen früher in den Himmel geblickt haben, sahen sie dort “nur” Sterne. Über die man nie sehr viel wissen würde, wie der französische Philosoph Auguste Comte 1835 plaktiv behauptete:
“Wir haben die Möglichkeit, die Formen, Entfernungen, Größen und Bewegungen der Sterne zu bestimmen, während wir niemals durch irgendein Mittel ihre chemische Zusammensetzung bestimmen können”
Damit lag er spektakulär falsch, wie die wenige Jahre später entwickelte Technik der Spektroskopie eindrucksvoll demonstrierte. Eine sorgfältige Analyse des Lichts ließ Astronomen die Spektrallinien finden und verstehen. Wenn Licht aus dem Inneren eines Sterns durch das heiße Gas nach außen strahlt, dann trifft es dabei auf die Atome aus denen dieses Gas besteht. Die Elektronen in der Hülle der Atome blockieren einen kleinen Teil des Lichts und welcher Teil das ist, hängt davon ab, wie die Elektronen in der Hülle konfiguriert sind. Und da das bei jedem chemischen Element anders ist, erzeugen sie alle unterschiedliche Spektrallinien. Die Astronomen sind seitdem also in der Lage, sehr genau herauszufinden, wie Sterne chemisch zusammen gesetzt sind.
Das Licht durchquert aber nicht nur den Stern selbst, sondern auf seinem Weg zur Erde auch den gesamten Weltraum dazwischen. Und der ist zwar ziemlich leer, aber nicht komplett. Hie und da findet man ein paar Moleküle, ein paar Atome, größere oder kleiner kosmische Wolken und das eine oder andere Staubkorn. Dieses interstellare Medium beeinflusst das Licht ebenfalls und schwächt es ab. Dieses Phänomen nennt man “Extinktion” und es wirkt sich auf das gesamte Lichtspektrum gleichmäßig aus. Im Jahr 1922 entdeckte die amerikanische Astronomin Mary Lea Heger aber, dass sich im Lichtspektrum eines Sterns auch ein paar sehr seltsame Spektrallinien finden. Sie waren viel diffuser und unschärfer als die schmalen Linien die durch die Materie in den äußeren Schichten eines Sterns erzeugt werden. Die Stärke dieser diffusen Linien war, zumindest ein wenig, auch mit der Stärke der Extinktion korreliert. Je mehr interstellare Materie das Licht durchqueren musste, desto schwächer erschienen die Linien. Daraus schlossen die Astronomen, dass diese diffusen interstellaren Banden (DIBs) irgendwie vom Material zwischen den Sternen hervor gerufen werden muss.
Aber wovon genau? Die Spektrallinien entsprachen keinem bekannten chemischen Element oder Molekül. Zumindest nicht den einfachen Molekülen und mehr als einfache Moleküle konnte es im Weltall ja wohl nicht geben, wie man dachte. Man fand auch viele verschiedene DIBs, deren Stärke nicht voneinander abhing, was ein deutlicher Hinweis darauf war, dass es mehr als nur einen einzigen Ursprung für sie geben muss. Das Rätsel der Herkunft der diffusen interstellaren Banden blieb ungelöst. Aber jetzt, nach fast 100 Jahren, könnte es endlich eine Antwort geben, mein Harold Kroto in seinem Vortrag und erklärt, welche Rolle die Chemie bei der Lösung dieses Rätsel gespielt hat.
Die DIBs sind nicht einfach einzelne Spektrallinien, sondern zeigen bei näherer Beobachtung eine komplexe Struktur. Eine komplexe Struktur, die von ebenso komplexen Molekülen erzeugt werden muss. Und mit komplexen Molekülen kennt Harold Kroto sich aus! Seinen Nobelpreis bekam er (gemeinsam mit Robert Curl und Richard Smalley) für die Herstellung des sogenannten “Buckminster-Fullerens” C60. Es besteht aus 60 Kohlenstoffatomen, die eine Art “Fußball” bilden; eine symmetrische, kugelförmige Struktur (ein abgestumpftes Ikosaeder) die aus 12 Fünfecken und 20 Sechsecken zusammengesetzt ist. Kroto und seine Kollegen konnten dieses außergewöhnliche Molekül im Labor herstellen und zwar mit Hilfe der Astronomie: Bei ihren Experimenten simulierten sie die chemischen Vorgänge in der Atmosphäre roter Riesensterne und stellten überrascht fest, dass die Buckminster-Fullerene sich dort spontan bilden können und das bei ihnen im Labor auch taten.
Kommentare (12)