Heute ist Pi-Tag! Einmal im Jahr ignorieren wir die seltsame amerikanische Datumsschreibweise und freuen uns darüber, dass wir den heutigen Tag als 3/14 schreiben können. Denn so beginnt auch die Zahl Pi; das Verhältnis von Umfang zu Durchmesser eines Kreises. Pi ist eine der wichtigsten Konstanten in der Mathematik und der Naturwissenschaft – es gibt kaum einen Bereich der Wissenschaft in dem diese Zahl keine relevante Rolle spielt. Die Zahl Pi ist so faszinierend, dass sie überall auf der Welt regelrechte Fanclubs hat die den heutigen Tag nutzen, um die Zahl zu feiern und ein wenig Werbung für die Mathematik zu machen.
Ich selbst bin ja Pi-Botschafter des Vereins der “Freunde der Zahl Pi” und habe hier im Blog schon oft über die Zahl Pi geschrieben (hier oder hier oder hier oder hier oder hier oder hier). Und werde auch den heutigen Tag natürlich nicht verstreichen lassen, ohne über Pi zu sprechen!
Die Zahl Pi hat jede Menge faszinierende Eigenschaften. Sie ist irrational, das heißt sie hat unendlich viele Nachkommastellen die keinen System folgen. Sie ist transzendent, das heißt nicht Nullstelle eines Polynoms mit ganzzahligen Koeffizienten. Ganz besonders interessant finde ich aber die Frage, ob Pi normal ist. Bei dieser Eigenschaft ist die Mathematik mit ihrer Wortwahl allerdings ein wenig zu zurückhaltend. Das, was die Mathematiker “normal” nennen ist definitiv nicht normal!
Ganz simpel ausgedrückt ist eine Zahl genau dann normal, wenn man jede beliebige Kombination aus Ziffern in der Abfolge ihrer Nachkommastellen finden kann. Die Ziffernfolge “28071977” (mein Geburtstag) findet sich zum Beispiel 52.126.615 Stellen weit hinter dem Komma (und hier kann jeder selbst eigene Ziffernfolgen prüfen lassen). Etwas formaler beschrieben sollte man zum Beispiel in einer normalen Zahl eine bestimmte einzelne Ziffer – etwa die “8” – in einem Zehntel aller Fälle finden, wenn man eine beliebige Ziffer aus der Nachkommastellenentwicklung auswählt. Eine Abfolge aus zwei Ziffern – zum Beispiel “28” – sollte man in einem Hundertstel aller Fälle finden; eine Abfolge aus drei Ziffern in einem Tausendstel aller Fälle – und so weiter.
So richtig faszinierend wird die Eigenschaft wenn man berücksichtigt, dass Pi eben unendlich viele Nachkommastellen hat. Und “unendlich” viele sind wirklich viele! Das bedeutet nichts anderes, dass man sich eine beliebig lange Zahlenfolge ausdenken kann und sie trotzdem irgendwo in Pi finden wird (unendlich oft sogar!). Ich könnte zum Beispiel den Text meines neuen Buchs über Isaac Newton nehmen, in eine Zahlenfolge kodieren und würde genau diese Zahlenfolge dann irgendwo in den Nachkommastellen von Pi finden können! Man würde ALLE Bücher in Pi finden die jemals geschrieben worden sind; genauso auch alle Bücher die in Zukunft geschrieben werden – und auch alle Bücher, die nie geschrieben worden sind. ALLES wäre irgendwo in Pi auffindbar!
Allerdings nur dann, wenn Pi auch tatsächlich normal ist. Das ist aber mathematisch noch nicht bewiesen. Solange man noch keinen Beweis hat, kann man nur empirische Untersuchungen anstellen. Genau das hat Peter Trueb aus der Schweiz kürzlich getan (“Digit Statistics of the First 22.4 Trillion Decimal Digits of Pi”). Er hat 22,4 Billionen Nachkommastellen der Zahl Pi untersucht und nachgesehen, ob zumindest hier die Normalität gegeben ist. Das Ergebnis: Ja – bis jetzt weißt nichts darauf hin, dass Pi nicht normal ist. Ein Wissenschaftler aus Venezuela hat vor ein paar Monaten das gleiche Ergebnis mit anderen Methoden erhalten (“Fractal analysis of Pi normality”). Er hat dazu die Berechnung der Fraktalen Dimension verwendet. Das ist – in diesem Zusammenhang – ein Maß für die Form einer Kurve (ich habe hier mehr dazu erklärt) und man kann die Nachkommastellen von Pi ja auch in einem Diagramm als Kurve darstellen. Je nachdem ob Pi normal ist oder nicht sollte sich das Aussehen dieser Kurve auf eine bestimmte Art verändern, wenn man Nachkommastellen hinzufügt (das ist in etwa so wie das was ich hier beschrieben habe) – und auch hier zeigt sich: Alles was wir bis jetzt über Pi wissen deutet darauf hin, dass die Zahl normal ist.
Natürlich können diese empirischen Analysen immer nur interessante Wegweiser sein aber nichts allgemeingültig aussagen. Egal wie viele Nachkommastellen wir noch berechnen: Es werden nie genug sein. Pi hat unendlich viele Nachkommastellen und Sicherheit über ihre Eigenschaften kann nur ein mathematischer Beweis liefern. Bis jetzt sieht alles so aus, als wäre Pi normal. Und wenn das so ist, dann ist das definitiv nicht normal!
P.S. Wer mich meiner Arbeit als Pi-Botschafter nachgehen sehen möchte, kann das zum Beispiel in der 50. Jubiläumsfolge der Science Busters tun:
P.P.S. Wer Mitglied im Verein der Freund der Zahl Pi werden möchte kann sich gerne an mich wenden. Als Pi-Botschafter kann ich die entsprechende Aufnahmsprüfung (bei der man 100 Nachkommastellen auswendig aufsagen muss) abnehmen.
P.P.P.S. Ja, ich kenne die Sache mit Tau. Und halte sie für Unfug – siehe hier
Kommentare (1.525)