Man lerne in der Schule zwar dem Vernehmen nach nichts über das (Alltags)Leben, dafür aber werde dort ausdrücklich nicht unerwähnt gelassen, daß Mitochondrien die Kraftwerke der Zellen seien.

Diese Bezeichnung, die vermutlich wirklich die allermeisten schon einmal gehört haben, stellt auf eine der wichtigsten Funktionen dieser Organellen ab, die man in (fast) allen eukaryotischen Zellen, bei Pflanzen, Pilzen und Tieren, findet: sie wandeln die “Rohenergie” aus der Nahrung in ein chemisches Energieäquivalent um, das überall und in allen Zellen des Körpers benötigt wird, um Prozesse, die nicht von selbst ablaufen würden (endergon), mit der notwendigen Energie zu versorgen und dieses Äquivalent, diese “Energiewährung” heißt Adenosintriphosphat (ja, das Zeug, aus dem u.a. auch die DNA besteht), kurz “ATP”.

Das ist zwar sowohl sehr interessant als auch sehr wichtig und die entsprechenden biochemischen Details der Atmungskette konnte wahrscheinlich so ziemlich jeder Biologe und Biochemiker irgendwann während seiner Ausbildung auch nachts um vier geweckt abspulen. Dennoch ist dieser Prozess für die Forensische Genetik eher nebenrangig und darum soll es hier auch nicht gehen. Uns interessiert viel mehr die DNA der Mitochondrien, die mtDNA (s. Abbildung).

aufbau schema

Schematische Darstellung eines Mitochondriums
Man erkennt die Doppelmembran und im Inneren eigene, ringförmige DNA-Moleküle

DNA? Wieso hat denn so ein Organell, so ein Zellbestandteil überhaupt eigene DNA? Das erklärt sich durch die Herkunft der Mitochondrien: gemäß der bestbelegten Theorie waren die Vorgänger der Mitochondrien selbstständige Urbakterien, die natürlich auch ein eigenes Genom hatten und die vor hunderten Millionen bis Milliarden von Jahren von anderen Urzellen phagozytiert wurden, wodurch eine Endosymbiose entstand, in der beide Organismen von den Fähigkeiten des jeweils anderen profitierten. Und auch heute noch zeigen Mitochondrien deutliche Anzeichen ihrer bakteriellen Herkunft, darunter ihre Doppelmembran und eben das Vorhandensein ihrer eigenen DNA, die sogar eine leicht andere genetische Kodierung als die nukleäre DNA (nDNA) verwendet. Inzwischen sind die Mitochondrien längst keine selbstständigen Organismen mehr und viele ihrer Gene sind im Lauf der Evolution in die nDNA versetzt worden, doch noch immer enthält ihre ringförmige DNA eine ganze Reihe lebenswichtiger Gene die dichtgedrängt und zusammen mit einigen nicht-kodierenden Sequenzen insgesamt 16.569 Basen lang sind (s. Abbildung). Unter diesen Genen ist auch Cytochrom b, das ich schon an anderer Stelle erwähnte, und welches forensisch interessant ist, wenn, wie in jenem Artikel erläutert, im Rahmen einer Ermittlung die Spezies, die eine bestimmte Spur hinterlassen hat, bestimmt werden soll. Dies kommt zwar in der normalen Routinearbeit nur sehr selten vor, ist jedoch extrem relevant für die Wildlife Forensik, die ich schon einmal erwähnt habe und worüber ich sicher noch einen eigenen Artikel schreiben werde.

mtDNA

[a]

Für die “normale” Forensische Genetik ist aber ganz besonders die nicht-kodierende Sequenz, die den sogenannten D-Loop (blauer Bereich in der Abbildung), auch als “Kontrollregion” bezeichnet, ausmacht, interessant. Der D-Loop ist etwas über 1000 Basen lang und er ist die Stelle in der mtDNA, an der die Replikation beginnt und bis auf wenige Ausnahmen sind die Basen dieser Sequenz nicht besonders konserviert, das heißt, sie können durch zufällige Mutationen verändert werden, ohne daß das auf den Organismus schädliche Auswirkungen hätte. Aus diesem Grund unterscheidet sich die D-Loop-Sequenz der meisten nicht-verwandten Menschen voneinander und zwar ganz besonders in drei Abschnitten, die als hochvariable Regionen (HVR I-III) bezeichnet werden. Diese HVR kann man sequenzieren und nach einem Vergleich mit einer Referenzsequenz die Unterschiede zu dieser notieren. Diese Liste von Unterschieden ist dann sozusagen das mtDNA-Profil eines Menschen (s.u.) und kann mit dem anderer Menschen verglichen werden (z.B. mit dem von Jack the Ripper).

In der Forensik nutzt man diese Erkenntnis beispielsweise, wenn die DNA-Spuren an einem Tatort so beschädigt oder so minimal sind, daß das Standard-Verfahren für DNA-Profiling, das auf der Darstellung von STR-Systemen beruht, nicht mehr funktioniert. Der Vorteil der mtDNA gegenüber nDNA besteht darin, daß sie durch ihre geringe Größe und geschlossene Ringform viel stabiler ist, als die viel größere nDNA, so daß sie überdauern kann, selbst wenn die nDNA z.B. durch Umwelteinflüsse längst jenseits der Analysierbarkeit zerstört wurde. Außerdem gibt es in jeder Zelle hunderte bis tausend Mitochondrien, die jeweils mehre Kopien ihrer mtDNA enthalten. So findet sich in biologischem (= zellhaltigem) Spurenmaterial also immer tausende Male mehr mtDNA als nDNA, weshalb man, selbst wenn in einer Spur keine nDNA mehr nachweisbar ist, oft noch mtDNA darin finden und untersuchen kann.

flattr this!

1 / 2 / 3 / Auf einer Seite lesen

Kommentare (9)

  1. #1 Ludger
    29/01/2015

    Ich habe mal einen Vortrag von Martin Bormann junior (Details siehe Wikipedia) gehört, bei dem es darum ging, welche Probleme er als Nachfahre eines Naziverbrechers hatte. Dabei erwähnte er, die Umstände der Auffindung und Identifizierung seines Vaters.

    https://de.wikipedia.org/wiki/Martin_Bormann#N.C3.BCrnberger_Prozess_und_Todesumst.C3.A4nde
    Einige Jahre später half der Zufall: Bei Erdkabelarbeiten der Post am 7./8. Dezember 1972 wurden in der Nähe des Lehrter Bahnhofs nahe dem früheren Landesausstellungspark zwei Skelette im Boden entdeckt, die durch die Aussagen des damaligen (1945) Bestatters und durch die anschließenden genauen Untersuchungen durch Gerichtsmediziner, Zahnärzte (mittels forensischer Odontologie) und Anthropologen schnell Martin Bormann und Ludwig Stumpfegger zugeordnet werden konnten. An beiden Schädeln wurden zwischen den Zähnen Glassplitter von Blausäureampullen gefunden. Für Bormanns Skelett wurde die Identität 1998 durch eine DNS-Analyse bewiesen.[5][6] Bormanns Überreste wurden 1999 verbrannt, seine Asche in der Ostsee beigesetzt.[7]

    Bei der genetischen Untersuchung sei Blut einer alten Tante verwendet worden, die über die mütterliche Linie mit seinem Vater verwandt gewesen sei.

  2. #2 stboec
    30/01/2015

    Sehr interessanter Artikel! Der Exkurs hat mich animiert, nochmal in einen Review zu schauen, den ich vor einiger Zeit gelesen habe (Mishra & Chan, 2014, NRMCB). Dort steht, dass Mäuse, die heteroplasmatisch für unterschiedliche mitochondriale Haplotypen waren, Auffälligkeiten in Sachen Metabolismus und Verhalten zeigten. Wenn ich das richtig verstanden habe, würde man beide Haplotypen als “wild-typisch” bezeichnen … wenn die Haplotypen homoplasmatisch vorliegen, geht’s den Tieren nämlich recht gut. Könnte sein, dass es was mit Co-Evolution zu tun hat und dass die Haplotypen nicht zusammenpassen.
    Dass Mitochondrien irrtümlich als fremd erkannt werden, glaube ich nicht. In Säugetieren sind paternale Mitos mit Ubiquitin markiert, was u.a. als Signal zum autophagischen Abbau dient (in C. elegans ist das ja anders, wie die Sato & Sato Studie gezeigt hat). Ich vermute, dass das selektierter Mechanismus ist und nichts mit nem Irrtum zu tun hat.
    Ein weiterer Prozess, der die Vererbung paternaler mtDNA verhindert, ist aus Drosphila bekannt. Dort wird bereits vor der Befruchtung die mtDNA in den Spermien abgebaut (noch nicht die Mitochondrien selbst).

    Ich würd mich freuen, mehr über die Verwendung von Mitos in der Forensik zu lesen! 🙂

  3. #3 Cornelius Courts
    30/01/2015

    @stboec: “Dass Mitochondrien irrtümlich als fremd erkannt werden, glaube ich nicht.”

    Warum nicht? Selektive Autophagie wird in somatischen Zellen durchaus auch als Immunmechanismus zur Abwehr invasiver Bakterien eingesetzt. s. z.B. hier: https://www.ncbi.nlm.nih.gov/pubmed/21575909
    Könnte also durchaus der Fall sein, daß es da das fremde Mitochondrium erwischt…

    “Ich würd mich freuen, mehr über die Verwendung von Mitos in der Forensik zu lesen!”

    Die Grundlagen habe ich ja jetzt schon mal erläutert und einige Beispiele (J.t. Ripper und Schlangengift) hatte ich auch schon im Blog. Ich werde aber die Augen offen halten nach interessanten Anwendungen bzw. Fallberichten und dann mal wieder was dazu schreiben 🙂

  4. #4 stboec
    30/01/2015

    @Cornelius: “Warum nicht?”
    Weil es offensichtlich ein Signal gibt, dass es der Zelle erlaubt, zwischen maternalen und paternalen Mitos zu unterscheiden. Die maternalen bleiben erhalten, die paternalen werden abgebaut. Du schreibst ja von selektiver (!) Autophagie. In dem von Dir zitierten Fall Xenophagie, im Fall der Mitos von Mitophagie. Und dafür braucht’s ein spezifisches Signal (in beiden Fällen Ubiquitin), an das Autophagie-Rezeptoren binden und den Abbau einleiten.
    Die Zellen “wollen” das so. Ich kann da einfach nichts von nem Irrtum erkennen. Vielleicht versteh ich Dich da aber falsch und betreib hier nur Wortklauberei.

  5. #5 Uli
    02/02/2015

    So sehr ich mich anstrenge, bei dem hypothetischen Mordfall sehe ich keine Unterschiede zwischen den Brüdern… 🙁

  6. #6 Claudia
    https://cloudpharming.blogspot.de
    02/02/2015

    “Der Bruder des Tatverdächtigen, der auch als Täter in Frage kommt, hat jedoch das gleiche mtDNA-Profil” –> vielleicht liegt’s daran

  7. #7 Cornelius Courts
    02/02/2015

    @Uli: wie Claudia schon angedeutet hat, ist diese Tabelle zur Illustration der EINSCHRÄNKUNGEN der mtDNA in der Fallarbeit gedacht. Kinder derselben Mutter haben identische mtDNA, deshalb muß man mit Einschlüssen via mtDNA sehr vorsichtig sein.

  8. #8 JW
    04/02/2015

    Und was machen wir bei den in GB jetzt aktuellen Kindern mit 2 Müttern; sprich nach Mito-Spende. Dann haben wir in der forensischen Genetik ein (quantitatv kleines) Problem. Dazu dann die Frage, warum kein väterliches Mito in die Eizelle injizieren?Wird das zerstört?

  9. #9 Cornelius Courts
    04/02/2015

    @JW: “sprich nach Mito-Spende. Dann haben wir in der forensischen Genetik ein (quantitatv kleines) Problem”

    stimmt beides. Daß es ein Problem ist und daß es klein ist. Viel interessanter sind Empfänger von Knochenmarkspenden, deren Blut komplett das DNA-Profil der Spender enthält.