Wenn ich nicht versucht hätte, das Paper

Does ignorance of the whole imply ignorance of the parts?

zu lesen und zu verstehen, das in den Physical Review Letters veröffentlicht wurde … dann hätte ich vielleicht ein bisschen mehr davon verstanden. Zumindest, wenn es ein mit Quanteninformation geschriebenes Paper wäre. Denn genau darum geht es: Es beweist (ich bin mir gar nicht sicher, ob man in der Quantenphysik den Begriff des Beweises verwenden sollte), dass es unter den Annahmen der Quantentheorie möglich ist, trotz unvollständigem Wissen über ein Ganzes über jedes Teil dieses Ganzen informiert zu sein.

i-e8d8b0e261391d33dfae9b74fa340330-QuantumBob.gif

Das klingt nicht verquantet, sondern verquast – aber im Prinzip geht es wohl darum, dass es in der “normalen” Welt beispielsweise unmöglich ist, ein Buch nur zur Hälfte gelesen zu haben, und doch den Inhalt jeder Seite zu kennen. Oder wenn ich ein Bild nie vollständig sehen konnte (vielleicht, weil die obere Hälfte verbrannt war), kann ich auch nicht jedes Detail beschreiben, das auf dem ganzen Bild zu sehen war. Aber wenn es ein Quantenbild wäre, dann würde schon vielleicht das halbe Bild genügen, und ich könnte jedes Detail – auch jene der fehlenden Hälfte – auf Anfrage beschreiben. (Oder es würde genügen, dass ich nur diese rechts stehende Abbildung aus dem Paper kenne, und dennoch alle Details desselben weiß.)

Der Haken für mich ist dabei, wie ich mir Quanteninformation vorstellen soll. Denn das ist ja nicht etwa das theoretische Wissen über Quantenmechanik etc., sondern Wissen, das quantentheoretisch codiert ist. Und da erreicht meine Vorstellungskraft ihre Grenzen.

Aber das ist nicht das Problem der Quantentheorie, sondern nur das Problem meiner Vorstellungskraft. Denn in der Tat scheint es Forschungsfelder zu geben, wo Quanteneigenschaften zur Codierung von Informationen verwendet werden sollen – bei Quantencomputern, zum Beispiel. In dem Paper wird explizit darüber nachgedacht, welche Folgen dieses Unvollständigkeitsparadox für Quantenkryptographie haben kann. Denn das Prinzip der Kryptographie beruht ja auf der Idee, unvollständige Informationen zu transportieren, die nur durch ein allein dem Empfänger bekanntes Zusatzwissen vervollständigt = entschlüsselt werden können. Wenn aber selbst ein Teil schon genügt, um das Ganze zu verraten, dann haut das nicht mehr hin.

Aber wie schon bei der Quantenmechanik selbst besteht erst mal kein Grund zur Sorge: Auf die reale Informationswelt hat dies genau so wenig Auswirkung wie quantenmechanische Eigenheiten bewirken werden, dass mein hölzerner Esstisch plötzlich ein roter Ferrari wird (obwohl dies ja, soweit ich das bisweilen gelesen habe, eine nicht völlig auszuschließende Möglichkeit wäre, wenn ich an einen Quantentisch säße). Und wer genau wissen will, was ales in einem Buch steht, wird es auch weiterhin lesen müssen. Es sei denn, es ist ein Buch von … neee, ich werd’ mich hier doch nicht aus dem Fenster lehnen und irgend eine(n) jener vielschreibenden Bestsellerauror(inn)en nennen, deren Werke so formmelhaft und vorhersagbar sind, dass man oft schon nach der Hälfte des Buches genau weiß, wie es ausgehen wird. Ich überlasse es meinen Leserinnen und Lesern, dieses fehlende Stück Information hier selbst zu ergänzen.

flattr this!

Kommentare (4)

  1. #1 Sascha Vongehr
    1. August 2011

    “wenn ich an einen Quantentisch säße”
    Das tust Du. Die Welt ist quantum schon morgens wenn Du Deinen Tee trinkst, sie warted nicht bis Du im Labor bist. 😉

  2. #2 libertador
    1. August 2011

    @ Sascha Vongehr

    Ist die Welt vor dem Labor, denn schon gemessen worden 😉

  3. #3 Arno
    1. August 2011

    Hallo Juergen,

    Deine Beispiele scheinen nicht ganz passend zu sein: Statt das Buch zur Haelfte zu lesen, bekommt er von Alice einen Spickzettel der halb so lang wie das Buch ist. Ein Pruefer, der das gesamte Buch und den Spickzettel kennt kann nun nicht unbedingt eine Seitenzahl angeben und sich sicher sein, dass Bob die Seite nicht reproduzieren kann. Das Buch enthaelt Zufallszahlen, ie ist nicht redundant, Alice kann also den Inhalt nicht einfach komprimieren, sondern muss irgendwas mit Quantum machen.

  4. #4 Hanno
    1. August 2011

    Kleiner Hinweis, dein Sprung von Quantencomputern zu Quantenkryptografie ist ein bisschen gewagt.

    Das sind nämlich eigentlich zwei grundverschiedene Angelegenheiten.

    Quantenkryptografie (z.B. das BB84-Protokoll) ist eigentlich relativ simpel (zumindest die Theorie dazu) und ist mit heutiger Technik umsetzbar, sowas kann man kaufen (auch wenn der Weg von der theoretischen zur praktischen Sicherheit kein ganz einfacher ist). Es geht dabei um Verschlüsselung, die sich, zumindest wenn sie optimal implementiert ist, aufgrund physikalischer Eigenschaften nicht brechen lässt. Im Prinzip sind das eher “Quantentheorie-Basics”, es basiert darauf, dass ich die Polarisierung eines Teilchens nicht mit vollständiger Genauigkeit messen kann, bzw. mit meiner Messung den Zustand des Teilchens beeinflusse.

    Quantencomputer sind dagegen im Moment ein weitgehend theoretisches Konzept. Ein Quantencomputer mit genügend Kapazität wäre in der Lage, die meisten heute verwendeten Verschlüsselungsverfahren (RSA, ElGamal, ECDSA) in kurzer Zeit zu brechen. Die Theorie dahinter ist eher komplex (ich hab sie zumindest nie verstanden 😉 und basiert auf der Verschränkung von Teilchen. Der bislang größte Quantencomputer, der real gebaut wurde, hatte eine Kapazität von 7 Bit – noch ein weiter Weg, bis das mal ansatzweise brauchbar einsetzbar wird.