Mit Google die Hausaufgaben schwerer machen.

Offensichtlich nutzen Studenten das Netz immer mehr als gleichwertige Informationsquelle zu Vorlesungsskripten und Büchern. Über einen besonders dreisten Plagiats-Fall hatte Frischer Wind mal berichtet.

Ich beobachte in letzter Zeit aber auch noch ein anderes Phänomen: Studenten suchen sich (statt die Vorlesung mitzuschreiben oder sich wenigstens Mitschriften zu kopieren) Informationen aus dem Netz, die zwar in der Regel faktisch korrekt sind, aber viel komplizierter als der didaktisch aufbereitete Vorlesungsstoff.

Zwei Anekdoten aus meiner aktuellen Zahlentheorie-Vorlesung:

Zum Einstieg in das Thema Zahlenkongruenzen gab es zunächst ein paar sehr einfache Hausaufgaben, u.a. (besonders einfach) die Berechnung von 14111 mod 13.

Die Lösung ist natürlich ein Ein-Zeiler: Aus 14=1 mod 13 folgt 14111=1 mod 13.

Etwas erstaunt war ich dann, als einige Studenten viel umständlichere Lösungen abgaben, die den Satz von Euler-Fermat benutzten. Der war in der Vorlesung noch gar nicht besprochen worden, sollte erst nächste Woche drankommen. Auf meine erstaunte Frage, ob der Euler-Fermat schon aus den Grundstudiumsvorlesungen bekannt sei, antworteten sie, sie seien eben letzte Woche nicht in der Vorlesung gewesen und hätten deswegen im Internet nach Ansätzen gesucht. Und hätten dann dieses Verfahren gefunden.

Na ja, richtig war es natürlich, wenn auch unnötiger Rechen-Aufwand und mit Kanonen auf Spatzen geschossen. (Nebenbei wäre es natürlich auch einfacher gewesen, den Kleinen Fermat anzuwenden statt erst φ(13) auszurechnen. Wenn man schon unbedingt einen großen Satz verwenden will.)

Ein anderes Beispiel: auf einem Übungsblatt hatte ich die Aufgabe gestellt, die Korrektheit einiger ISBN nachzuprüfen.
(Nur um keinen falschen Eindruck zu vermitteln: die beiden Beispiele sind jetzt nicht repräsentativ für den Schwierigkeitsgrad unserer Übungszettel.)

Es gab bei der Aufgabe erwartungsgemäß auch keine Probleme, bis auf einige Studenten, die die ISBN-Nummern nach dem alten, bis 2006 gültigen, Verfahren überprüften. Offensichtlich waren sie nicht in der Vorlesung gewesen, hatten sich dann das Verfahren im Internet herausgesucht und waren dabei mit Google dummerweise auf alte Erklärungen mit dem alten Verfahren gestoßen.
Na ja, ich hab die Lösungen gelten lassen, weil ich auf dem Übungszettel nicht ausdrücklich geschrieben hatte, daß es sich um ISBN-Nummern nach dem neuen Verfahren handelt.
Lustig ist vielleicht, daß diese Studenten sich deutlich mehr Arbeit gemacht haben als notwendig – das neue Verfahren ist nämlich einfacher als die alte Methode. (Weil Buchnummern heute eingescannt und seltener eingetippt werden, hat man sozusagen die Sicherheitsstandards reduziert und verwendet seit 2007 ein einfacheres Verfahren zur Berechnung der Prüfziffer.)

Kommentare (2)

  1. #1 Cryptic
    15. Juni 2009

    Ich dachte man schreibt 14 mod 13 =1 statt 14=1 mod 13.

    :confused:

    Gruß

  2. #2 Thilo Kuessner
    15. Juni 2009

    Nein, eigentlich nicht.
    Allerdings schreibt man für Zahlenkongruenzen normalerweise ein Gleichheitszeichen mit 3 horizontalen Strichen (also nicht 2 wie in =), aber das war mir hier zu aufwändig und man versteht es ja auch so.