Die Innenwinkelsumme euklidischer Dreiecke ist stets π. Dagegen hängt die Innenwinkelsumme gekrümmter Dreiecke vom Flächeninhalt ab. Die Innenwinkelsumme eines sphärischen Dreiecks ist π + Flächeninhalt, die eines hyperbolischen Dreiecks π – Flächeninhalt. Carl Friedrich Gauß bewies in den 1820er Jahren allgemein, dass bei (nicht notwendig konstanter) Krümmung K die Innenwinkelsumme ist, wobei der zweite Summand…

Die Fibonacci-Folge wird bekanntlich definiert durch und die Verhältnisse aufeinanderfolgender Glieder konvergieren gegen den Goldenen Schnitt . In einem heute erschienenen Artikel im Plus-Magazin diskutiert Marianne Freiberger, was passiert, wenn man stattdessen die Folge betrachtet, wo also jeweils die Summen aus den letzten N Folgengliedern gebildet werden. Auch in diesem Fall konvergiert das Verhältnis gegen…

Der folgende Artikel ist ein Gastbeitrag von Helmut Zeisel. Im Logbuch Mathematik, Mitteilungen der DMV 2020/1, S.49 (Bild unten, drittletzter Abschnitt “… et quelle coincidence”, oder Link für Abonnenten) werfen Sie die Frage auf, ob für die Glieder der Fibonacci-Folge die Gleichung “nur eine Koinzidenz” ist. Ich weiß nicht, ob Sie dazu schon Antworten erhalten…

Die Lösung der linearen Differentialgleichung x‘(t)=Ax(t) im Rn mit einer nxn-Matrix A ist bekanntlich x(t)=etAx(0), wobei das Matrixexponential etA definiert ist als die Reihe . (Matrizen können addiert und miteinander und mit Skalaren multipliziert werden, was zunächst Polynome von Matrizen definiert. Es ist dann nicht schwer zu zeigen, dass die Matrizenfolge konvergiert.) Dagegen läßt sich…

Vaughan Jones, Entdecker des nach ihm benannten Knotenpolynoms, ist gestern überraschend in Neuseeland verstorben. Jones war eigentlich kein Knotentheoretiker, sondern arbeitete über von-Neumann-Algebren. Die Algebra der beschränkten linearen Operatoren auf dem Hilbert-Raum ist eine *-Algebra, wobei der Stern jedem Operator A den adjungierten Operator A* zuordnet. Man interessiert sich für die schwach abgeschlossenen Unteralgebren dieser…

Der indische Mathematiker Ramanujan war bekannt für seinen auf Formeln (statt Beweise) fixierten Stil, den er sich als Jugendlicher bei der Lektüre eines zur Prüfungsvorbereitung gedachten Buches mit vielen Formeln und wenigen Beweisen angeeignet haben soll. Wer schon immer mal wissen wollte, wie dieses Buch aussah und welche Inhalte vorkommen, bekommt dies in wenigen Minuten…

Viele Gleichungen lassen sich nicht exakt lösen, so dass man numerische Verfahren benötigt. Klassisch ist das Newton–Verfahren zur Lösung der Gleichung F(x)=0: mit der Rekursion soll eine Lösung von F(x)=0 approximiert werden. Man weiß dabei natürlich nicht, ob, wie schnell und gegen welche Lösung das Verfahren konvergiert. Dafür muss man verstehen, gegen welche Häufungspunkte die…

Die Maxwell-Gleichungen beschreiben die Phänomene des Elektromagnetismus, man formuliert sie elegant mit Hilfe der Operatoren div, grad, rot aus der Vektoranalyis. Beispielsweise beschreibt die Quellen des elektrischen Feldes und die Wirbel des Magnetfeldes. Die drei Operatoren der Vektoranalyis lassen sich mittels des folgenden kommutativen Diagramms alle als Spezialfälle des äußeren Differentials auf Differentialformen interpretieren, wobei…

3Blue1Brown hat ein neues Video Group Theory and why I love 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 (unter Mithilfe von Richard Borcherds). Es geht um Gruppen und wo sie überall vorkommen in Algebra, Geometrie, Physik, um die Klassifikation endlicher Gruppen und schließlich um die Monster-Gruppe und die Mondschein-Vermutung.

Die Riemannsche Zetafunktion ist die analytische Fortsetzung der für Re(s)>1 durch definierten Funktion. Sie kodiert die Verteilung der Primzahlen: der Primzahlsatz folgt aus der für alle Nullstellen gültigen Ungleichung Re(s)