Man macht ein Experiment, ob Studenten, die lauter sprechen oder schreien, bessere Zensuren schreiben. Man hat danach gewisse Meßwerte und fragt, ob diese die Nullhypothese widerlegen. (Die Nullhypothese besagt, dass es den vermuteten Zusammenhang nicht gibt.) Der p-Wert ist bei gegebenen Meßwerten die statistische Wahrscheinlichkeit, dass man bei zutreffender Nullhypothese die gemessenen Werte bekommen würde.…

In der Zahlentheorie interessiert man sich für Zahlkörper, endliche Erweiterungen des Körpers der rationalen Zahlen. André Weil hatte beobachtet, dass Zahlkörper viele Eigenschaften mit Funktionenkörpern einer algebraischen Kurve über einem endlichen Körper wie Fp(t) gemeinsam haben. Diese sind einer geometrischen Behandlung zugänglich und deshalb einfacher zu verstehen. Man faßt Zahlkörper und Funktionenkörper unter der Bezeichnung…

Im neuen xkcd kommen drei Arten mathematischer Probleme vor. Das erste ist eine Ansammlung von Buzzwörtern wie man sie bekommt, wenn man von einer künstlichen Intelligenz ein mathematisches Paper schreiben läßt. Das zweite fragt nach selbstmeidenden Irrfahrten auf dem Quadratgitter. Wie groß ist die Wahrscheinlichkeit, nach jeweils einem bestimmten Zeitintervall auf einer festen Diagonale zu…

Die Zeitschrift American Mathematical Monthly stellte 1894 die Aufgabe Ein konkreter Fall legte folgende Frage nahe: Eine gleiche Anzahl von weißen und schwarzen Kugeln gleicher Größe werden in eine rechteckige Schachtel geworfen. Wie groß ist die Wahrscheinlichkeit einer zusammenhängenden Kette sich berührender weiße Kugeln von einem Ende der Schachtel bis zum gegenüberliegenden Ende? In mathematischer…

Für die Nullstellen von Polynomen gibt es keine geschlossene Formel, außer bis Grad 4. Man berechnet sie deshalb mit dem Newton-Verfahren. Dafür muß man mit einem Startwert beginnen und das Newton-Verfahren konvergiert dann gegen eine Nullstelle des Polynoms. Auch wenn das Polynom mehrere Nullstellen hat, konvergiert das Newton-Verfahren natürlich nur gegen eine davon. Je nachdem,…

In der algebraischen Zahlentheorie befaßt man sich hauptsächlich mit Zahlkörpern und eine zentrale Frage ist, ob man dort eindeutige Primfaktorzerlegungen hat. Dies ist genau dann der Fall, wenn jedes Ideal im Ganzheitsring des Zahlkörpers ein Hauptideal ist, also wenn der Zahlkörper die Klassenzahl 1 hat. (Die Klassenzahl ist die Anzahl der Elemente der Idealklassengruppe, diese…

Die Physik-Nobelpreise sind heute zur einen Hälfte an Giorgio Parisi und zur anderen Hälfte an Klaus Hasselmann und Syukuro Manabe jeweils für ihre Beiträge zur Klimaforschung vergeben worden. Während Hasselmann und Manabe tatsächlich vor allem für ihre Beiträge zur Klimaforschung bekannt sind, hat Parisi eher allgemein über Muster in der Unordnung in zahlreichen unterschiedlichen Gebieten…

Wir haben jetzt jeden vierten Deutschen geimpft. Diese Woche wird es noch jeder fünfte werden. Bundesgesundheitsminister Jens Spahn am 26. April 2021. Titelgeschichte vom Juli 2021 Es zeichnet sich ab, dass die Menschheit den Kampf gegen das Coronavirus und seine Mutanten verliert. Selbst wenn die Welt in Vakzinen schwömme, wäre eine globale Herdenimmunität kaum erreichbar.…

In der algebraischen Geometrie behandelt man Räume mittels der algebraischen Untersuchung der Ringe der auf ihnen definierten (algebraischen) Funktionen. Auch in anderen Gebieten der Mathematik betrachtet man oft geeignete Funktionenräume (in physikalischer Sprache: Observablen) statt der zugrundeliegenden Räume, zum Beispiel einfach die Algebra C0(X) der komplexwertigen stetigen Funktionen mit kompaktem Träger auf X. Diese Algebra…

Lösungen von Differentialgleichungen haben oft eine hohe Regularität, d.h. sie sind häufiger differenzierbar als es für die Formulierung der Differentialgleichung eigentlich notwendig wäre. David Hilbert hatte deshalb als neunzehntes seiner 23 Jahrhundertprobleme die Frage nach der Analytizität von Lösungen elliptischer partieller Differentialgleichungen mit analytischen Koeffizienten gestellt. Das Problem wurde bereits 1903 von Sergei Bernstein gelöst…