Die klassische Mechanik geht auf Isaac Newton zurück. Er beobachtete, dass sich Körper unter der Wirkung eines Kraftfeldes F gemäß der Differentialgleichung bewegen. Eine allgemeinere Formulierung gelang im 18. Jahrhundert Lagrange, der die Bewegungsgleichungen aus Variationsprinzipien herleiten konnte, also als Euler-Lagrange-Gleichungen eines geeigneten Wirkungsfunktionals. Im 19. Jahrhundert erkannten Hamilton und Jacobi, dass man diese Euler-Lagrange-Gleichungen…

Beim Gaußschen Klassenzahlproblem ging es ursprünglich um die Anzahl der Äquivalenzklassen quadratischer Formen mit gegebener Diskriminante . Die Koeffizienten a,b,c sollen ganzzahlig sein und zwei quadratische Formen gelten als äquivalent, wenn sie durch einen linearen Basiswechsel mit ganzzahligen Koeffizienten, also eine Basiswechselmatrix aus auseinander hervorgehen. Gauß hatte in den 1801 veröffentlichten „Disquisitiones Arithmeticae“ für die…

Gestern fand die Gauß-Vorlesung – eine halbjährliche Veranstaltung der Deutschen Mathematiker-Vereinigung, die einer interessierten Öffentlichkeit einen Eindruck von aktueller Mathematik vermitteln soll – in Augsburg statt, coronabedingt online. Durch die Online-Übertragung konnte man diesmal von überall an der Veranstaltung teilnehmen, trotzdem war die Teilnehmerzahl mit gut 200 Zuhörern nicht höher als sonst auch. (Allerdings war…

Die Gauß-Vorlesungen finden zweimal im Jahr statt und sollen der interessierten Öffentlichkeit einen Eindruck geben, woran Mathematiker arbeiten. Einen Beitrag über die Gauß-Vorlesung in Regensburg mit Cédric Villani hatte ich mal hier und mit Koautoren hier und dort geschrieben. Die Gauß-Vorlesungen werden an wechselnden Orten veranstaltet und haben in der Regel einige Hundert Zuhörer aus…

Die Erstellung von Knotentabellen und damit verbundene Versuche, nicht-äquivalente Knoten zu unterscheiden, begannen im 19. Jahrhundert. Zu einem Knoten im R3 oder besser in dessen Ein-Punkt-Kompaktifizierung S3 kann man das Knotenkomplement oder besser das Komplement einer Tubenumgebung des Knotens, eine 3-Mannigfaltigkeit mit einem Torus als Rand. Wenn zwei Knoten nicht-homöomorphe Knotenkomplemente haben, können sie nicht…

Gewisse Zikadenarten haben einen Lebenszyklus von 13 oder 17 Jahren, d.h. sie überleben 13 oder 17 Jahre lang eingesponnen als Puppe und erwachen im 13. oder 17. Jahr für einige Wochen zum Leben. Es fällt auf, dass 13 und 17 eine mathematische Besonderheit haben: es handelt sich um Primzahlen. Edward Dunne vom Blog Beyond reviews:…

Komplexe Dynamik befasst sich mit der Iteration einer Funktion auf der komplexen Zahlenebene. Zu einer Funktion f betrachtet man, wie sich komplexe Zahlen z bei wiederholter Anwendung von f verhalten; es geht also um die Folge . Wenn zum Beispiel iteriert wird, wird diese Folge bei einem Startwert z innerhalb des Einheitskreises gegen Null konvergieren,…

Fermats Vermutung sagte bekanntlich, dass xn+yn=zn für n≥3 keine nichttrivialen ganzzahligen Lösungen hat. Äquivalent soll xn+yn=1 keine rationalen Lösungen außer (0,1) und (1,0) sowie (wenn n gerade ist) (0,-1) und (-1,0) haben. Man weiß schon seit dem Altertum, dass es unendlich viele pythagoreischer Zahlentripel gibt, also ganzzahlige Lösungen von x2+y2=z2. Während die Unlösbarkeit der Fermat-Gleichung…

Seit Weierstraß weiß man, dass sich jede stetige Abbildung durch Polynome und damit durch differenzierbare Abbildungen beliebig gut annähern läßt. Das überträgt sich auch auf Mannigfaltigkeiten, wo man stetige Abbildungen mittels beliebig kleiner Homotopien in differenzierbare deformieren kann. Das legt eigentlich nahe, dass Topologie von Mannigfaltigkeiten in der differenzierbaren Kategorie nicht anders sein sollte als…

El País berichtet am 7. Mai über eine Arbeit spanischer Mathematiker, die (symbolisch) eine Turing-Maschine aus Wasser gebaut haben. (Die Überschrift „Cuatro matemáticos demuestran que era imposible predecir el destino de 29.000 patitos de goma en el mar“ bedeutet „Vier Mathematiker beweisen, dass es unmöglich war, dass Schicksal der Quietscheentchen im Meer vorherzusagen“, sie bezieht…