Der Abelpreis (mit fast 106$ der höchstdotierte Mathematikpreis) geht dieses Jahr an Masaki Kashiwara für seine Arbeiten zur Darstellungstheorie.
Der Abelpreis wird jährlich von der Norwegischen Akademie der Wissenschaften vergeben. Er gilt als eine Art Ersatz dafür, daß es keinen Nobelpreis für Mathematik gibt. Über die Gründe, warum Nobel keinen Mathematik-Nobelpreis stiftete, gibt es viele anekdotische Erklärungen, die aber nach allgemeiner Meinung alle in das Reich der Fabel gehören.
Die Verleihung findet am 20. Mai in Oslo statt.
Laut Würdigung des Abelpreiskomitees erhält er die Auszeichnung für seine fundamentalen Beiträge zur algebraischen Analysis und Darstellungstheorie, insbesondere für die Entwicklung der Theorie der D-Moduln und die Entdeckung der Kristallbasen.
Als algebraische Analysis bezeichnet man die Untersuchung linearer partieller Differentialgleichungen mit algebraischen Mitteln, wofür D-Moduln die algebraische Sprache liefern. Diese von Mikio Sato entwickelte Theorie wurde von Kashiwara und Schapira zur mikrolokalen Garbentheorie weiterentwickelt. Kashiwara (und unabhängig Mebkhout) bewies die Äquivalenz gewisser D-Moduln mit perversen Garben, womit er das von Deligne gelöste Riemann-Hilbert-Problem verallgemeinerte. Gemeinsam mit Brylinski (und unabhängig Beilinson und Bernstein) bewies Kashiwara die Kazhdan-Lusztig-Vermutung, die eine Verbindung der Darstellungstheorie zur Schnittkohomologie herstellt. Der Beweis verwendete die Riemann-Hilbert-Korrespondenz. Die Theorie der D-Moduln hat zahlreiche weitere Anwendungen in der Darstellungstheorie über Körpern beliebiger Charakteristik.
In der Theorie der Quantengruppen bewies Kashiwara die Existenz von Kristallbasen für Darstellungen höchsten Gewichts.
Die gesamte Laudatio ist auf https://abelprize.no/sites/default/files/2025-03/citation_english_Abelprize2025.pdf.
Informationen zur Geschichte des Abelpreises findet man hier. Die bisherigen Preisträger seit 2003 sind:
2003 Jean-Pierre Serre (Frankreich): Homotopietheorie, Algebraische Geometrie
2004 Michael Atiyah (GB), Isadore Singer (USA): Globale Analysis
2005 Peter Lax (USA): Partielle Differentialgleichungen, Streutheorie
2006 Lennart Carleson (Schweden): Harmonische Analysis, Dynamische Systeme
2007 Srinivasa Varadan (Indien): Wahrscheinlichkeitstheorie, Große Abweichungen
2008 Jacques Tits (Belgien), John Thompson (USA): Gruppentheorie
2009 Michael Gromov (Frankreich): Riemannsche und Symplektische Geometrie, Geometrische Gruppentheorie
2010 John Tate (USA): Algebraische Zahlentheorie, Elliptische Kurven
2011 John Milnor (USA): Differentialtopologie
2012 Endre Szemeredi (Ungarn): Graphentheorie
2013 Pierre Deligne (Belgien): Algebraische Geometrie
2014 Yakov Sinai (Russland): Dynamische Systeme
2015 John Nash, Louis Nirenberg (USA): Partielle Differentialgleichungen
2016 Andrew Wiles (GB): Algebraische Zahlentheorie, Elliptische Kurven
2017 Yves Meyer (Frankreich): Harmonische Analysis
2018 Robert Langlands (Kanada): Darstellungstheorie, Zahlentheorie
2019 Karen Uhlenbeck (USA): Geometrische Analysis
2020 Hillel Furstenberg (Israel), Grigori Margulis (USA): Ergodentheorie
2021 László Lovász (Ungarn), Avi Wigderson (Israel): Diskrete Mathematik, Theoretische Informatik
2022 Dennis Sullivan (USA): Topologie, Dynamische Systeme
2023 Luis Caffarelli (Argentinien): partielle Differentialgleichungen
2024 Michel Talagarand (Frankreich): Wahrscheinlichkeitstheorie
Kommentare (2)