„Seit die Mathematiker über die Relativitätstheorie hergefallen sind, verstehe ich sie selbst nicht mehr.“ soll Albert Einstein gesagt haben, nachdem Hermann Minkowski 1907 seine spezielle Relativitätstheorie in einen mathematischen Rahmen zu setzen gelungen war – als Anwendung der von Bernhard Riemann in seinem Habilitationsvortrag 1858 vorgeschlagenen durch ein punktweises Skalarprodukt auf einer Mannigfaltigkeit („Riemannsche Metrik“)…
Wenn man ein Möbiusband ein zweites Mal verdreht, bekommt man kein Möbiusband, sondern einen gewöhnlichen Kreiszylinder. Wenn man es ein drittes Mal verdreht, hat man aber wieder ein Möbiusband. Auch nach der 17. Verdrehung bekommt man wieder ein Möbiusband. Dasselbe kann man auch mit einer Kleinschen Flasche machen, wie Cliff Stoll im neuen Numberphile-Video zeigt:
Algebraische Varietäten (klassisch: Nullstellenmengen von Polynomen) heißen isomorph, wenn es zueinander inverse polynomielle Abbildungen zwischen ihnen gibt. Algebraische Varietäten können beliebig komplizierte Singularitäten haben, was ihre Klassifikation völlig aussichtslos macht. Man versucht deshalb eine Klassifikation unter einem schwächeren Äquivalenzbegriff, der birationalen Äquivalenz: zwei Varietäten heißen birational äquivalent, wenn es zueinander inverse rationale Abbildungen zwischen ihnen…
Man kann eine Fläche vom Geschlecht 2 (Bild oben) auf allerlei verquere Arten verformen und sie bleibt trotzdem eine Fläche vom Geschlecht 2 – sehr unterhaltsam vorgeführt im neuen Numberphile-Video:
Darstellungen von Lie-Gruppen kommen heute überall in der theoretischen Physik vor, historisch waren sie im 19. Jahrhundert vor allem in der Invariantentheorie von Interesse: dort betrachtet man beispielsweise die Wirkung von SL(n,C) auf dem Raum der homogenen Polynome vom Grad d in n Variablen. Damals wie heute interessiert man sich nur für differenzierbare Darstellungen. (Alles…
Der Riemannsche Abbildungssatz behauptet, dass man jedes einfach zusammenhängende Gebiet biholomorph (komplex differenzierbar mit einer komplex differenzierbaren Umkehrabbildung) auf die Einheitskreisscheibe abbilden kann, und – falls der Rand des Gebietes eine Jordankurve ist – diese Abbildung stetig auf den Rand fortgesetzt werden kann. Er ist nach Riemann benannt, auch wenn dieser keinen nach heutigen Maßstäben…
„Eine Kurve ist eine Länge ohne Breite“ heißt es bei Euklid, was wohl ausdrücken sollte, dass Kurven 1-dimensional sind. Felix Klein meinte einmal, jeder wisse, was eine Kurve sei – bis er genug Mathematik studiert habe um von den zahllosen Ausnahmen verwirrt zu sein. Kurven definiert man heute als Bilder stetiger Abbildungen eines (endlichen oder…
Die Bezeichnung „Körper“ für eine unter den vier Operationen +,-,x,: abgeschlossene Menge reeller oder komplexer Zahlen wurde 1871 von Richard Dedekind eingeführt. Ohne den Namen waren algebraische Zahlkörper (endliche Erweiterungen der rationalen Zahlen) natürlich schon in den zahlentheoretischen Arbeiten von Gauß und Lagrange ebenso präsent gewesen wie auch in den Arbeiten von Abel und Galois…
Kann man die natürlichen Zahlen mit 13 Farben einfärben ohne dass es eine einfarbige arithmetische Folge der Länge 28 gibt? Oder, einfacher, kann man sie mit zwei Farben einfärben ohne dass es eine arithmetische Folge der Länge 3 gibt? An diesem einfachen Beispiel erklärt Timothy Gowers den Satz von der Waerden:
Das Gesetz der großen Zahlen ist ein empirisches Naturgesetz: relative Häufigkeiten stabilisieren sich mit wachsender Zahl von Versuchen. Mathematisch kann man das auf verschiedene Weise formalisieren. Man hat eine Folge von Zufallsvariablen Xn mit Erwartungswerten E(Xn) und betrachtet die zentrierten Mittelwerte . Eine mögliche Formulierung ist das schwache Gesetz der großen Zahlen: für jedes positive…









Letzte Kommentare