Komplexe Dynamik befasst sich mit der Iteration einer Funktion auf der komplexen Zahlenebene. Zu einer Funktion f betrachtet man, wie sich komplexe Zahlen z bei wiederholter Anwendung von f verhalten; es geht also um die Folge . Wenn zum Beispiel iteriert wird, wird diese Folge bei einem Startwert z innerhalb des Einheitskreises gegen Null konvergieren,…

Fermats Vermutung sagte bekanntlich, dass xn+yn=zn für n≥3 keine nichttrivialen ganzzahligen Lösungen hat. Äquivalent soll xn+yn=1 keine rationalen Lösungen außer (0,1) und (1,0) sowie (wenn n gerade ist) (0,-1) und (-1,0) haben. Man weiß schon seit dem Altertum, dass es unendlich viele pythagoreischer Zahlentripel gibt, also ganzzahlige Lösungen von x2+y2=z2. Während die Unlösbarkeit der Fermat-Gleichung…

Seit Weierstraß weiß man, dass sich jede stetige Abbildung durch Polynome und damit durch differenzierbare Abbildungen beliebig gut annähern läßt. Das überträgt sich auch auf Mannigfaltigkeiten, wo man stetige Abbildungen mittels beliebig kleiner Homotopien in differenzierbare deformieren kann. Das legt eigentlich nahe, dass Topologie von Mannigfaltigkeiten in der differenzierbaren Kategorie nicht anders sein sollte als…

El País berichtet am 7. Mai über eine Arbeit spanischer Mathematiker, die (symbolisch) eine Turing-Maschine aus Wasser gebaut haben. (Die Überschrift „Cuatro matemáticos demuestran que era imposible predecir el destino de 29.000 patitos de goma en el mar“ bedeutet „Vier Mathematiker beweisen, dass es unmöglich war, dass Schicksal der Quietscheentchen im Meer vorherzusagen“, sie bezieht…

Geometrische Darstellungstheorie untersucht Darstellungen algebraischer Gruppen durch geometrisch definierte Wirkungen, z.B. auf Schnitten von Bündeln oder Garben bzw. auf deren Kohomologie. Ein klassisches Beispiel ist der Satz von Borel-Weil-Bott, der die irreduziblen Darstellungen einer Lie-Gruppen G als Kohomologiegruppen geeigneter Linienbündel über der Fahnenmannigfaltigkeit G/B beschreibt. Für eine algebraische Gruppe G hat man ein „Gebäude“ (einen…

Als Modell bezeichnet man in der Mathematik ein Modell eines Axiomensystems. Beispielsweise ist die Geometrie der euklidischen Ebene ein Modell des euklidischen Axiomensystems. Wenn man auf das Parallelenaxiom verzichtet, ist auch die Geometrie der hyperbolischen Ebene ein Modell des übrigbleibenden Axiomensystems. Die Existenz eines Modells beweist die Widerspruchsfreiheit eines Axiomensystems. In der Modelltheorie als Teilgebiet…

„I am just rephrasing what others have done in my own words, I‘m just repeating what they said. And sometimes you somehow combine it with something else you already learned and then you just say it in slightly different words, but suddenly it seems to have a different meaning somehow, but … I don‘t know.“…

Bekanntlich divergiert die harmonische Reihe , während man leicht zeigen kann, dass kleiner als 2 bleibt und deshalb konvergieren muß. Die Suche nach dem genauen Wert dieser Reihe wurde im 17. Jahrhundert als “Basler Problem” bekannt, gelöst wurde die Frage 1735 von Euler: . Heute gibt es hierfür einen einfachen Beweis, der die Fourier-Entwicklung der…

Ein neues Video von Matt Parker zeigt 3-dimensionale Netze des 4-dimensionalen Hyperwürfels:

Eine (komplexe) ebene Kurve kann man auf zwei Arten beschreiben: implizit durch eine Gleichung F(x,y)=0 oder explizit als Bild einer parametrisierten Kurve c:C–>C2. Kegelschnitte und auch singuläre Kubiken lassen sich durch rationale Funktionen parametrisieren, nichtsinguläre Kubiken (elliptische Kurven) aber nicht: für ihre Parametrisierung benötigt man die unten abgebildete Weierstraßsche ℘-Funktion eines Gitters L. Die elliptische…