Geometrische Darstellungstheorie untersucht Darstellungen algebraischer Gruppen durch geometrisch definierte Wirkungen, z.B. auf Schnitten von Bündeln oder Garben bzw. auf deren Kohomologie. Ein klassisches Beispiel ist der Satz von Borel-Weil-Bott, der die irreduziblen Darstellungen einer Lie-Gruppen G als Kohomologiegruppen geeigneter Linienbündel über der Fahnenmannigfaltigkeit G/B beschreibt. Für eine algebraische Gruppe G hat man ein „Gebäude“ (einen…
Die Riemannsche Vermutung ist eines der bekanntesten offenen Probleme der Mathematik. Sie besagt, dass die Nullstellen der Riemannschen Zetafunktion auf der „kritischen Geraden“ Re(s)=1/2 liegen. Riemann selbst ebenso wie Hadamard und de La Vallée Poussin, die mit Hilfe der Zetafunktion den Primzahlsatz bewiesen, hatten einen rein analytischen Ansatz. In Retrospekt drückte die Vermutung jedoch wirklich…
Der Abelpreis (mit gut 106$ der höchstdotierte Mathematikpreis) geht dieses Jahr an Pierre Deligne.
In Captcha I hatten wir über den restriktiven Zugang zu einem kroatischen Zufallszahlengenerator berichtet. Noch strenger sind die Verfasser eines Artikels über erste Hilfe bei Kopfschmerzen. Sie verlangen, daß man die Riemann’sche Vermutung löst.
Letzte Kommentare