Der Riemannsche Abbildungssatz behauptet, dass man jedes einfach zusammenhängende Gebiet biholomorph (komplex differenzierbar mit einer komplex differenzierbaren Umkehrabbildung) auf die Einheitskreisscheibe abbilden kann, und – falls der Rand des Gebietes eine Jordankurve ist – diese Abbildung stetig auf den Rand fortgesetzt werden kann. Er ist nach Riemann benannt, auch wenn dieser keinen nach heutigen Maßstäben…
Viele Differentialgleichungen lassen sich in äquivalente Integralgleichungen umformen. Beispielsweise führt im Beweis des Existenzsatzes für gewöhnliche Differentialgleichungen (Picard-Lindelöf) die Integration von x’=f(x(t),t) mit Anfangswert x(t0)=x0 auf die Integralgleichung . Auch viele partielle Differentialgleichungen können auf Integralgleichungen zurückgeführt werden. Solche Ansätze waren häufig nützlich gewesen, man hatte aber im 19. Jahrhundert nicht damit gerechnet, dass es…
Letzte Kommentare