„Alle Quantenzahlen sind Kennzeichen von Gruppendarstellungen“ – mit diesem Postulat pflegte Hermann Weyl die Bedeutung der Gruppentheorie, besonders der Darstellungstheorie unitärer Gruppen auf Hilberträumen, in der Quantenmechanik zu betonen. Die Darstellungstheorie kompakter Gruppen wurde in den 20er Jahren vor allem von Hermann Weyl ausgearbeitet, aufbauend auf der von Élie Cartan entwickelten Darstellungstheorie einfacher Lie-Gruppen. Am…
Darstellungstheorie entstand ursprünglich nicht als Theorie linearer Darstellungen, sondern als Theorie der Charaktere (nicht notwendig abelscher) Gruppen. Charaktere abelscher Gruppen, also Homomorphismen in die multiplikative Gruppe der komplexen Zahlen, waren mindestens implizit im 19. Jahrhunderts in Zahlentheorie und harmonischer Analyse vorgekommen. Mittels Dirichlet-Charakteren (Homomorphismen (Z/nZ)x–>Cx) und den ihnen zugeordneten L-Funktionen bewies Dirichlet die Existenz unendlich…
Letzte Kommentare