Als Dirichlet-Reihen bezeichnet man Funktionen der Art . Für die konstante Funktion f=1 bekommt man beispielsweise die Riemannsche Zetafunktion, deren Nullstellen einem Informationen über die Verteilung der Primzahlen geben. Wenn f multiplikativ ist, also f(mn)=f(m)f(n) für alle m und n gilt, kann man F als „Euler-Produkt“ über alle Primzahlen zerlegen: . Für den Fall der…
Das von Carl Friedrich Gauß in seinem Jugendwerk Disquisitiones Arithmeticae bewiesene quadratische Reziprozitätsgesetz gilt heute als der Übergang von der elementaren zur algebraischen Zahlentheorie: es handelt sich um ein elementares Problem, das von Gauß mit elementaren Mitteln bewiesen wurde, jedoch machte die Suche nach Verallgemeinerungen des Reziprozitätsgesetzes große Teile der dann entstehenden algebraischen Zahlentheorie aus.…
Letzte Kommentare