“postfaktisch” oder “post-truth” sind nicht nur Wort des Jahres und Grundlage für einen Beweis der Riemann-Vermutung, sie scheinen auch sonst allerorten auf dem Siegeszug.
Manche Feuilletonisten versuchen diese Entwicklung mit der Entwicklung der Mathematik (und Wissenschaft allgemein) in Zusammenhang zu bringen, etwa Jacob Koshy: “Should ‘post-truth’ depress us?” Ich verstehe nicht so wirklich seinen Punkt über Gödel und Shannon, jedenfalls kommt er zu folgendem Fazit:
Post-truth, when seen this way, doesn’t necessarily point to bleakness but rather suggests that we may be on the edge of completely overturning our sensibilities on what constitutes ‘objectivity’ or ‘knowledge.’ It is now argued that algorithms have, instead of making the world a connected entity, ended up erecting echo chambers that slot us into hermetic opinion bubbles. It is as if everyone’s truths are so true that no debate can lead us to new insight. If science could build itself on foundations that were post-truth, there is no reason why a more humble introspection cannot restore our faith in reading, opinion, analysis and, of course, truth itself.
Glaubt man dem Physik-Blog Not Even Wong, dann gibt es gerade in den letzten Wochen einen enormen Hype um die (von vielen Physikern eher als Pseudowissenschaft angesehene, dafür aber seit langem von der Templeton-Stiftung geförderte) Viele-Welten-Theorie. Die Viele-Welten-Interpretation der Quantenmechanik besagt laut Wikipedia, dass alle möglichen Vergangenheiten wie Zukünfte real sind und jede eine tatsächliche Welt oder ein Universum repräsentiert. Die Hypothese beinhaltet eine riesige oder unendliche Anzahl an Universen, und alles was in unserer Vergangenheit geschehen hätte können geschah in der Vergangenheit einiger anderer Universen.
Das mathematische Analogon zur Viele-Welten-Theorie sollen, dem Oktoberheft des Bulletin of the American Mathematical Society zufolge, Theorien sein, die man durch Verzicht auf das Prinzip vom ausgeschlossenen Dritten erhält (also das Prinzip, das zu jeder Aussage P entweder P oder nicht-P richtig ist, wir hatten damals über den Bulletin-Artikel geschrieben)
We initially set out to understand the difference between the classical and the constructive world of mathematics, only to have discovered that there are not two
but many worlds, some of which simply cannot be discounted as logicians’ contrivances.
[…]
As exciting as a multiverse of mathematics may be, the working mathematician has no time to spend their career wandering from one world to another. Nevertheless, they surely are curious about the newly discovered richness of mathematics, they welcome ideas coming from unfamiliar worlds, and they strive to make their own work widely applicable.
Als Argument wurde im Bulletin angeführt, dass sich Sätze der nicht-konstruktiven Mathematik durch einfache Umformulierungen in konstruktiv beweisbare Sätze verwandeln liessen. So funktioniere der Beweis des Zwischenwertsatzes in der konstruktiven Mathematik nicht, seine Umformulierung ”Wenn f stetig ist und für jedes x entweder f(x)>0 oder f(x)<0 gilt, dann ist f entweder überall positiv oder überall negativ'' aber sei auch ohne das Prinzip des ausgeschlossenen Dritten beweisbar. Das erinnert ein wenig an Brexit-Befürworter, die argumentieren dass England ja schliesslich auch ohne Binnenmarkt Freihandelsabkommen schliessen könne.
Und das passende literarische Werk dazu ist vielleicht Juli Zehs letztes Jahr erschienener Gesellschaftsroman “Unterleuten”, wo jedes der 62 Romankapitel aus der Sicht einer der 12 Hauptpersonen geschrieben ist und deren Sichten sich auch in der Darstellung der reinen Fakten der Romanhandlung diametral unterscheiden, der Leser also bspw. nicht erfährt, was denn nun “wirklich” passiert ist in der Gewitternacht vor zwanzig Jahren.
Sorgfältig hatte Gerhard alle Aussagen in ihre Bestandteile zerlegt und alle Informationen neu zusammengesetzt. Was herauskam, stellte die Wahrheit dar. Dann jedenfalls, wenn man aufgeklärt genug war, um {\em Wahrheit} als den Fall mit der höchsten Wahrscheinlichkeit zu betrachten.
Kommentare (12)