Als Modell bezeichnet man in der Mathematik ein Modell eines Axiomensystems. Beispielsweise ist die Geometrie der euklidischen Ebene ein Modell des euklidischen Axiomensystems. Wenn man auf das Parallelenaxiom verzichtet, ist auch die Geometrie der hyperbolischen Ebene ein Modell des übrigbleibenden Axiomensystems. Die Existenz eines Modells beweist die Widerspruchsfreiheit eines Axiomensystems. In der Modelltheorie als Teilgebiet…
„I am just rephrasing what others have done in my own words, I‘m just repeating what they said. And sometimes you somehow combine it with something else you already learned and then you just say it in slightly different words, but suddenly it seems to have a different meaning somehow, but … I don‘t know.“…
Bekanntlich divergiert die harmonische Reihe , während man leicht zeigen kann, dass kleiner als 2 bleibt und deshalb konvergieren muß. Die Suche nach dem genauen Wert dieser Reihe wurde im 17. Jahrhundert als “Basler Problem” bekannt, gelöst wurde die Frage 1735 von Euler: . Heute gibt es hierfür einen einfachen Beweis, der die Fourier-Entwicklung der…
Ein neues Video von Matt Parker zeigt 3-dimensionale Netze des 4-dimensionalen Hyperwürfels:
Eine (komplexe) ebene Kurve kann man auf zwei Arten beschreiben: implizit durch eine Gleichung F(x,y)=0 oder explizit als Bild einer parametrisierten Kurve c:C–>C2. Kegelschnitte und auch singuläre Kubiken lassen sich durch rationale Funktionen parametrisieren, nichtsinguläre Kubiken (elliptische Kurven) aber nicht: für ihre Parametrisierung benötigt man die unten abgebildete Weierstraßsche ℘-Funktion eines Gitters L. Die elliptische…
3Blue1Brown hat ein neues Video mit einer einfachen Methode, Eigenwerte von Matrizen zu berechnen: Die Methode funktioniert freilich nur für 2×2-Matrizen.
Das Deutsche Allgemeine Sonntagsblatt betitelte Anfang der 90er Jahre einen Bericht über jüdische Orchester in deutschen Konzentrationslagern mit der Überschrift „Sie spielten bis zum Vergasen“. Das fanden damals viele Leser geschmacklos, die taz wollte dafür die Gurke des Jahres verleihen und Esslinger-Schneider nahmen den Fall als Negativbeispiel in ihr Buch “Die Überschrift” auf. Am Dienstagabend…
Calabi-Yau-Mannigfaltigkeiten gelten heute als Grundlage der Stringtheorie, sie sollen die sechs zur Raum-Zeit hinzukommenden zusätzlichen Dimensionen ausmachen. Ursprünglich stammen sie aber aus der Differentialgeometrie, genauer aus der Theorie der Kähler-Mannigfaltigkeiten. (Das sind komplexe Mannigfaltigkeiten mit einer kompatiblen Riemannschen Metrik g und dadurch gegebener (1,1)-Form ω(X,Y)=g(X,JY). Kähler hatte sie in den 30er Jahren eingeführt, um die…
Letzte Kommentare