Roger Penrose ist heute mit dem Physik-Nobelpreis ausgezeichnet worden für sein Singularitätentheorem, das die Existenz von schwarzen Löchern vorhersagt, welche von den beiden anderen Preisträgern Reinhard Genzel und Andrea Ghez dann in unserer Galaxie entdeckt wurden. Was ist der mathematische Inhalt des Singularitätentheorems? In der allgemeinen Relativitätstheorie geht es um pseudo-Riemannsche Metriken auf einer Raum-Zeit,…
Die beiden grundlegenden Sätze der klassischen Funktionentheorie, der Produktsatz von Weierstraß und der Partialbruchsatz von Mittag-Leffler, lassen sich beide verstehen als eine Globalisierung von lokal leicht durchzuführenden Konstruktionen. Beim Partialbruchsatz geht es um das Problem, eine meromorphe Funktion mit vorgegebenen Polstellen zu finden. Gibt es beispielsweise eine Funktion f, die in jeder natürlichen Zahl n…
In der Topologie will man Räume durch Invarianten beschreiben, entweder numerische Invarianten (Zahlen) oder algebraische Invarianten (Gruppen, Ringe, Moduln). Riemann und Betti definierten im 19. Jahrhundert die k-Zusammenhangszahlen einer Varietät als die maximalen Anzahlen unabhängiger k-Zykeln (in dem Sinne dass keine Linearkombination der Zykeln ein Rand ist). Poincaré entwickelte 1895 erstmals eine Homologietheorie. Dafür nahm…
Die Innenwinkelsumme euklidischer Dreiecke ist stets π. Dagegen hängt die Innenwinkelsumme gekrümmter Dreiecke vom Flächeninhalt ab. Die Innenwinkelsumme eines sphärischen Dreiecks ist π + Flächeninhalt, die eines hyperbolischen Dreiecks π – Flächeninhalt. Carl Friedrich Gauß bewies in den 1820er Jahren allgemein, dass bei (nicht notwendig konstanter) Krümmung K die Innenwinkelsumme ist, wobei der zweite Summand…
Die Fibonacci-Folge wird bekanntlich definiert durch und die Verhältnisse aufeinanderfolgender Glieder konvergieren gegen den Goldenen Schnitt . In einem heute erschienenen Artikel im Plus-Magazin diskutiert Marianne Freiberger, was passiert, wenn man stattdessen die Folge betrachtet, wo also jeweils die Summen aus den letzten N Folgengliedern gebildet werden. Auch in diesem Fall konvergiert das Verhältnis gegen…
Der folgende Artikel ist ein Gastbeitrag von Helmut Zeisel. Im Logbuch Mathematik, Mitteilungen der DMV 2020/1, S.49 (Bild unten, drittletzter Abschnitt “… et quelle coincidence”, oder Link für Abonnenten) werfen Sie die Frage auf, ob für die Glieder der Fibonacci-Folge die Gleichung “nur eine Koinzidenz” ist. Ich weiß nicht, ob Sie dazu schon Antworten erhalten…
Die Lösung der linearen Differentialgleichung x‘(t)=Ax(t) im Rn mit einer nxn-Matrix A ist bekanntlich x(t)=etAx(0), wobei das Matrixexponential etA definiert ist als die Reihe . (Matrizen können addiert und miteinander und mit Skalaren multipliziert werden, was zunächst Polynome von Matrizen definiert. Es ist dann nicht schwer zu zeigen, dass die Matrizenfolge konvergiert.) Dagegen läßt sich…
Vaughan Jones, Entdecker des nach ihm benannten Knotenpolynoms, ist gestern überraschend in Neuseeland verstorben. Jones war eigentlich kein Knotentheoretiker, sondern arbeitete über von-Neumann-Algebren. Die Algebra der beschränkten linearen Operatoren auf dem Hilbert-Raum ist eine *-Algebra, wobei der Stern jedem Operator A den adjungierten Operator A* zuordnet. Man interessiert sich für die schwach abgeschlossenen Unteralgebren dieser…
Der indische Mathematiker Ramanujan war bekannt für seinen auf Formeln (statt Beweise) fixierten Stil, den er sich als Jugendlicher bei der Lektüre eines zur Prüfungsvorbereitung gedachten Buches mit vielen Formeln und wenigen Beweisen angeeignet haben soll. Wer schon immer mal wissen wollte, wie dieses Buch aussah und welche Inhalte vorkommen, bekommt dies in wenigen Minuten…
Viele Gleichungen lassen sich nicht exakt lösen, so dass man numerische Verfahren benötigt. Klassisch ist das Newton–Verfahren zur Lösung der Gleichung F(x)=0: mit der Rekursion soll eine Lösung von F(x)=0 approximiert werden. Man weiß dabei natürlich nicht, ob, wie schnell und gegen welche Lösung das Verfahren konvergiert. Dafür muss man verstehen, gegen welche Häufungspunkte die…
Letzte Kommentare