Mit statistischen Tests soll eine Nullhypothese H0 (etwa: ein Medikament wirkt nicht besser als ein Placebo) getestet werden. Man hat eine Menge X von möglichen Ereignissen, die durch den Test zerlegen werden soll in zwei Teilmengen: den Verwerfungsbereich A – wo die Nullhypothese abgelehnt wird – und dessen Komplement, wo die Nullhypothese als bestätigt gilt.…
Noch in den 1920er Jahren bestand der Inhalt einer Algebra-Vorlesung aus „konkreter“ Mathematik: Determinanten, symmetrische Funktionen und Resultanten, der Trägheitsindex einer reellen quadratischen Form, die Lösung kubischer und biquadratischer Gleichungen, die Sturmsche Regel zur Anzahl reeller Nullstellen eines Polynoms, projektive Geometrie (Erzeugung der Kegelschnitte durch zwei Geradenbüschel), und abzählende Geometrie (z.B. die Anzahl von Kegelschnitten…
Ein zentrales Postulat der kinetischen Gastheorie ist seit Boltzmann die Ergodenhypothese: thermodynamische Systeme verhalten sich völlig zufällig, alle energetisch möglichen Phasenraum-Regionen werden erreicht und die Trajektorie verbringt auf lange Sicht anteilig genausoviel Zeit in einer Region des Phasenraums wie es dem Anteil des Volumens dieser Region am gesamten Phasenraum entspricht. Mathematisch geht es um einen…
xkcd versucht Zusammenhänge zwischen den Millenium–Problemen zu konstruieren: Die Millennium–Probleme sind sieben berühmte mathematische Probleme, auf deren Lösung das Clay–Institut im Jahr 2000 jeweils 1 Million Dollar ausgesetzt hatte. Das einzige bisher gelöste ist die Poincaré–Vermutung, für die Perelman das Preisgeld aber nicht angenommen hat. (Es wurde dann für Stipendien gestiftet.) Ich muß zugeben, dass…
In der Mathematik gibt es unter anderem maßtheoretische Entropie, topologische Entropie, Volumenentropie, geometrische Entropie und noch einiges mehr. xkcd ist jetzt aufgefallen, dass der Begriff „Dynamische Entropie“ noch nicht belegt ist: Link: https://imgs.xkcd.com/comics/dynamic_entropy.png
Periodische Bahnen kommen in der Physik überall vor, von Planetenbahnen bis zum harmonischen Oszillator. In der Geometrie interessierte man sich zunächst im Zusammenhang physikalischer Anwendungen für geschlossene Geodäten. Poincaré bewies in seinen Arbeiten zum Dreikörperproblem, dass kleine Deformationen der runden Sphäre immer noch unendlich viele geschlossene Geodäten haben. Auch in Hadamards Arbeiten über Geodäten ging…
Spätestens seit Isaac Newton weiß man, dass jede kubische Kurve in die Form y2=x3+ax+b zu bringen ist und dass man für „elliptische Kurven“ – diejenigen, bei denen die rechte Seite keine mehrfache Nullstelle hat – ein Tangentenverfahren zur „Verdopplung“ sowie ein Sekantenverfahren zur „Addition“ von Punkten hat, mit denen aus einigen geratenen rationalen Lösungen viele…
Wenn man 55555 in den Taschenrechner tippt, dann das Inverse nimmt und anschließend den Sinus, bekommt man 3,141624×10-7. Wenn man 555555555 tippt, dann das Inverse nimmt und anschließend den Sinus, bekommt man 3,141592×10-11. Wenn man 5555555555555 eintippt, dann das Inverse nimmt und anschließend den Sinus, bekommt man 3,141592×10-15. Es fällt auf, dass die Zahl vor…
Die Funktionalanalysis entstand ursprünglich aus der Beschäftigung mit Integralgleichungen. Die dabei vorkommenden Integraloperatoren sind stetig, denn für lineare Operatoren sind Stetigkeit und Beschränktheit äquivalent. Die Theorie beschränkter Operatoren ist in vieler Hinsicht eine Verallgemeinerung der klassischen Matrizenrechnung (bzw. der linearen Algebra, die allerdings erst mit der Entwicklung der Funktionalanalysis ihre zentrale Stellung innerhalb der Mathematik…
Beim quadratischen Reziprozitätsgesetz geht es um die Lösbarkeit der Gleichung x2=p mod q. Für seine Formulierung verwendet man das Legendre-Symbol , welches 1 sein soll, wenn x2=p mod q eine Lösung hat, und -1 sonst. Dann besagt das Reziprozitätsgesetz für ungerade Primzahlen p,q. In ideal- und körpertheoretischer Sprache übersetzt sich x2=p mod q in die…
Letzte Kommentare