Am gestrigen Sonntag ist im Alter von 91 Jahren Jacques Tits verstorben, einer der führenden Gruppentheoretiker des 20. Jahrhunderts und Träger des Abelpreises (2008). Tits hatte als 20-Jähriger in Brüssel über die Frage promoviert, ob die projektiv-linearen Gruppen PGL(2,F) durch die dreifach transitive Wirkung auf der projektiven Geraden P1F charakterisiert werden. 1964 wechselte er von…

Als Beginn der Gruppen- wie der Körpertheorie gilt die Idee von Galois, die Auflösbarkeit eines Polynoms auf die Auflösbarkeit der Galois-Gruppe der entsprechenden Körpererweiterung von Q zurückzuführen. Darauf aufbauend beschäftigt sich die algebraische Zahlentheorie seit dem Ende des 19. Jahrhunderts vor allem mit den endlichen Körpererweiterungen der rationalen Zahlen. Die Galois-Gruppen aller endlichen Körpererweiterungen von…

Symplektische Geometrie ist die geometrische Interpretation der klassischen Mechanik. Man kann sie auf beliebigen symplektischen Mannigfaltigkeiten betreiben, was zur symplektischen Topologie führt. Diese bekam ihre wichtigsten Impulse durch die Arbeit an der 1974 in ihrer Allgemeinheit formulierten Arnold-Vermutung: ein Symplektomorphismus, der die Zeit-1-Abbildung eines Hamiltonschen Flusses ist, soll mindestens soviele Fixpunkte haben, wie die Summe…

„Die Wahrheit ist eine zu ernste Sache als dass wir sie ausschließlich mathematischen Theorien überlassen sollten“, ist das Fazit eines neuen bei ARTE erstellten Videos:

Die Topologie von Flächen und 3-dimensionalen Mannigfaltigkeiten kann man durch die Geometrie besonders regelmäßiger Metriken auf ihnen verstehen. Für Flächen mit mindestens zwei Henkeln und auch für hinreichend komplizierte 3-Mannigfaltigkeiten sind das hyperbolische Metriken, die also Krümmung konstant -1 haben und deren universelle Überlagerung die hyperbolische Ebene bzw. der hyperbolische Raum ist. In der 3-dimensionalen…

Ein 1837 von Dirichlet bewiesener Satz besagt, dass die arithmetische Folge unendlich viele Primzahlen enthält, wenn a und m teilerfremd sind. Zum Beispiel gibt es unendlich viele Primzahlen, die bei Division durch 35 den Rest 6 lassen. Andererseits ist nach dem 1896 von Hadamard und de La Vallée Poussin bewiesenen Primzahlsatz die Dichte der Primzahlen…

In der Lösungsformel für kubische Gleichungen kommen imaginäre Zahlen vor, und zwar auch dann, wenn das Endergebnis reell ist. Man kann sie einfach nicht vermeiden – das führte im 16. Jahrhundert zur Anerkennung der komplexen Zahlen. Und in Physik und Elektrotechnik beschreibt man Schwingungen durch komplexe Zahlen, weil man so bequemer rechnen kann. Natürlich könnte…

Ende des 19. Jahrhunderts etablierte Poincaré die Topologie als „Methode, die uns die qualitativen Beziehungen in einem Raum zu erkennen erlaubt“. Er argumentierte, sie „könnte auf gewisse Weise Dienste leisten, die jenen der Zahlen analog wären“. Als topologische Invarianten definierte er die Fundamentalgruppe und die Zusammenhangszahlen und Torsionskoeffizienten (in heutigen Begriffen den Rang und die…

Quantenkohomologie wurde ursprünglich von den Physikern Vafa und Witten vorgeschlagen als Konzept, mit dessen Hilfe man das von Physikern beobachtete Phänomen der Mirrorsymmetrie von Calabi-Yau-Mannigfaltigkeiten angehen wollte: man wollte verstehen, wie sich die Korrelationsfunktionen einer topologischen Feldtheorie verhalten, wenn man Riemannsche Flächen zusammenklebt. Quantenkohomologie ist eine formale Deformation des Kohomologierings (also des Cupprodukts auf der…

Man macht ein Experiment, ob Studenten, die lauter sprechen oder schreien, bessere Zensuren schreiben. Man hat danach gewisse Meßwerte und fragt, ob diese die Nullhypothese widerlegen. (Die Nullhypothese besagt, dass es den vermuteten Zusammenhang nicht gibt.) Der p-Wert ist bei gegebenen Meßwerten die statistische Wahrscheinlichkeit, dass man bei zutreffender Nullhypothese die gemessenen Werte bekommen würde.…