In dieser Reihe ging es ja eigentlich um Geometrisierung von Flächen und wofür sie nützlich ist. Die meisten Flächen (nämlich die mit mindestens 2 Henkeln) hatten eine hyperbolische Metrik, während der Torus sich mit einer flachen Metrik in Form bringen ließ (TvF 63). Quelle: Ghys: Geometriser l’espace Daß der Torus die einzige geschlossene Fläche ist,…
Aus der Schule kennt man natürlich Parallelverschiebung in der Ebene oder im Raum. Auch auf gekrümmmten Flächen kann man Vektoren parallelverschieben, anschaulich sieht das dann so aus: Definiert wird die Parallelverschiebung (entlang einer Kurve) über die folgende Bedingung: ein Vektorfeld ist parallel entlang einer Kurve, wenn seine Ableitung (nach den Tangentialvektoren der Kurve) 0 ist.…
Parallelverschiebung auf Flächen.
Letzte Kommentare