Garbentheorie ist ein in den 40er Jahren von Leray ursprünglich in analytischem Kontext eingeführter Ansatz, der zunächst die Funktionentheorie mehrerer komplexer Veränderlicher komplett umgekrempelt hatte. Jean-Pierre Serre und Henri Cartan konnten einige Hauptresultate der Funktionentheorie mehrerer Veränderlicher mittels Garbentheorie reformulieren und verallgemeinern. Zum Beispiel konnten sie beweisen, dass die von Stein als Verallgemeinerung der Holomorphiegebiete…
In einem abgeschlossenen Intervall [a,b] hat jede Folge eine konvergente Teilfolge. Das folgt aus dem Satz von Bolzano-Weierstraß und es war den Analytikern seit dem 19. Jahrhundert klar, dass das eine sehr nützliche Eigenschaft des abgeschlossenen Intervalls ist, und allgemeiner auch eine nützliche Eigenschaft abgeschlossener und beschränkter Teilmengen des Rn. Frechet hatte 1905 in seiner…
Die Euler-Charakteristik war hier schon häufiger Thema, beim Igelsatz (TvF 201) wie auch bei Zerlegungen von Flächen (TvF 3) oder dem Gauß-Bonnet-Theorem (TvF 71). Der Igelsatz zeigt den Zusammenhang zwischen Euler-Charakteristik und Nullstellen von Vektorfeldern. Letztere haben offenkundig damit zu tun, wie getwistet das Tangentialbündel der Fläche ist. Die Twists im Tangentialbündel wiederum mißt man…
Wenn, was ja in letzter Zeit häufig der Fall ist, das Geschäftsgebaren der großen Wissenschaftsverlage kritisiert wird, dann geht es unter anderem auch immer um die Praxis des Bündelns, dass also Bibliotheken quasi gezwungen werden, ein ganzes Bündel von Zeitschriften zu einem zu vereinbarenden Preis zu kaufen und die Zeitschriften innerhalb eines Bündels oft von…
Charakteristische Klassen sollen messen wie getwistet (verdreht) ein Bündel ist. Das Möbiusband zum Beispiel ist – als Bündel über dem Mittelkreis betrachtet – verdrehter als ein Kreisring: weshalb seine charakteristischen Klassen komplizierter sein sollten. (Der Kreisring ist – als Bündel über dem Mittelkreis – sogar völlig unverdreht, weshalb seine charakteristischen Klassen trivial sein sollten.) So…
Letzte Kommentare