Während ein Verfahren zur numerischen Lösung gewöhnlicher Differentialgleichungen schon von Leonhard Euler in seinem 1768 erschienenen Buch Institutiones Calculi Integralis vorgestellt wurde, beginnt die numerische Behandlung partieller Differentialgleichungen erst im 20. Jahrhundert.
Der Meteorologe Lewis Richardson schlug in seinem 1922 erschienen Buch Weather Prediction by Numerical Process (das in der ersten, 1916 vollendeten Fassung noch Weather Prediction by Arithmetical Finite Differences hieß) eine numerische Wettervorhersage vorgeschlagen. 64000 Rechner sollten ausreichen, das weltweite Wetter schnell genug für eine tägliche Meldung zu berechnen. Für seine numerische Wettervorhersage überzog er die Weltkarte mit einem Schachbrettmuster, wobei die Felder eine Seitenlänge von etwa 200 Kilometer hatten. Die Atmosphäre oberhalb jedes dieser Felder unterteilte er weiter in Schichten mit Grenzen in 2000, 4200, 7200 und 11800 Metern Höhe. Beinahe die Hälfte seines Buches besteht dann aus einer Diskussion der notwendigen physikalischen Gleichungen, um möglichst alle physikalischen Vorgänge, die sich zwischen diesen Zellen abspielen, zu berücksichtigen.
Als Finite-Differenzen-Methode bezeichnet man Verfahren, wo an endlich vielen, äquidistanten Gitterpunkten die Ableitungen durch Differenzenquotienten ersetzt werden.
Im Fall gewöhnlicher Differentialgleichungen erhält man durch gleichmäßige Diskretisierung das Eulersche Polygonzugverfahren. Ersetzt man bei den klassischen linearen Differentialgleichungsproblemen der mathematischen Physik die Differentialquotienten durch Differenzenquotienten in einem rechtwinkligen Gitter, so gelangt man zu algebraischen Problemen von sehr einfacher Struktur. Courant, Lewy und Friedrichs hatten in einer 1928 in Mathematische Annalen veröffentlichten Arbeit “Über die partiellen Differenzengleichungen der mathematischen Physik” nichtlineare solche Gleichungen betrachtet und für einige typische Beispiele bewiesen, dass die Lösungen der Differenzengleichung gegen die Lösung der entsprechenden Differentialgleichung konvergieren. Damit erhielten sie insbesondere einfache Beweise für die Lösbarkeit der Differentialgleichungen, die zwar in den meisten Beispielen schon bekannt war, aber mit uneinheitlichen und nicht verallgemeinerungsfähigen Methoden bewiesen. Courant und seinen Koautoren ging es dabei also weniger um die praktische Anwendung numerischer Verfahren gegangen als um Beweise für die Existenz von Lösungen. Die Fehleranalyse für Differenzenschemata elliptischer Gleichungen begann erst 1930 mit Gerschgorin.
Konkret bewiesen Courant-Friedrichs-Lewy, dass bei elliptischen Gleichungen einfache und weitgehend von der Wahl des Gitters unabhängige Konvergenzverhältnisse herrschen. Dagegen erhielten sie für hyperbolische Gleichungen (Wellengleichungen) Konvergenz gegen die korrekte Lösung nur dann, wenn die Verhältnisse der Gittermaschen in verschiedenen Richtungen gewissen Ungleichungen genügen, die von der Lage der Charakteristiken zum Gitter bestimmt werden. Sie zeigten, dass Konvergenz der Differenzenschemata aus Stabilität folgt und dass die Stabilität der Lösungen (d.h. die Unempfindlichkeit gegenüber kleinen Störungen der Daten) von einer später als Courant-Friedrichs-Lewy-Zahl bezeichneten Größe abhängt. Im eindimensionalen Fall ist das , wobei u die Geschwindigkeit der Welle ist und die beiden anderen Größen der diskrete Ortsschritt und der diskrete Zeitschritt sind. In diesem Fall gilt Stabilität des Eulerschen Polygonzugverfahrens genau dann, wenn c<1. Ähnliche Bedingungen erhielten sie auch für andere Diskretisierungsschemata.
Stabilität eines Verfahrens bedeutet, dass die im Verfahren verwendeten Operatoren gleichmäßig beschränkt sein sollen. Fundamental bei der Analyse der Finite-Differenzen-Methode für die numerische Lösung von partiellen Differenzialgleichungen wurde ein 1956 von Peter Lax (und in zahlreichen Spezialfällen schon frûher) bewiesener Äquivalenzsatz, demzufolge für ein korrekt gestelltes lineares Anfangswertproblem eine konsistente Methode genau dann konvergent ist, wenn sie stabil ist. Konsistenz heißt, dass der Algorithmus bei exakten Eingaben auch das exakte Ergebnis liefern würde. Konsistenz und Stabilität sind in der Regel viel einfacher zu überprüfen als Konvergenz.
Lax arbeitete später über die Euler-Gleichungen der Gasdynamik. Deren numerische Lösung ist sehr schwierig, weil selbst bei glatten Anfangsdaten intrinisische Diskontinuitäten auftreten. Außerdem war die Existenz von Lösungen damals noch nicht bewiesen. "Nur weil wir nicht beweisen können, dass kompressible Flüsse mit vorgeschriebenen Anfangswerten existieren, bedeutet das nicht, dass wir sie nicht berechnen können" meinte er. Schließlich existieren sie ja physikalisch. Das von Lax und Friedrichs Ende der 40er Jahre entwickelte Differenzenschema wurde unverzichtbar und ein Meilenstein in der Behandlung hyperbolischer Erhaltungsgleichungen.
Kommentare (11)