Die Euler-Charakteristik war hier schon häufiger Thema, beim Igelsatz (TvF 201) wie auch bei Zerlegungen von Flächen (TvF 3) oder dem Gauß-Bonnet-Theorem (TvF 71). Der Igelsatz zeigt den Zusammenhang zwischen Euler-Charakteristik und Nullstellen von Vektorfeldern. Letztere haben offenkundig damit zu tun, wie getwistet das Tangentialbündel der Fläche ist. Die Twists im Tangentialbündel wiederum mißt man…
Wenn im Deutschen von Produktbündeln die Rede ist, denkt man eher an den Telekommunikationsmarkt. Mit der mathematischen Bedeutung hat das wie meist nichts zu tun, dort sind Produktbündel einfach diejenigen, die nicht verdreht sind (oder sich zumindest geradebiegen lassen) – z.B. der unverdrehte Zylinder rechts im Gegensatz zum verdrehten Möbiusband links: Wir hatten in den…
Kann man die Zukunft berechnen wie die Bewegungen der Sterne? Was sind Geschwindigkeitsvektoren und was heißt es, ein Vektorfeld zu integrieren? Warum werden Entenpopulationen nicht unbegrenzt wachsen, auch wenn es viele Seerosen gibt? (Und was hat das mit Poincaré-Bendixsson zu tun?) Warum sollte man Geodäten auf Stierköpfen nicht nur praktisch, sondern auch mathematisch kennen? Was…
Viele Bündel in einem großen Bündel wiederzufinden funktioniert nicht bloß bei Landwirtschaftlern oder Herstellern von Kameraausrüstungen (das Video zum Bild unten ist hier), sondern auch ganz universell. Es gibt ein universelles Geradenbündel, indem man in gewisser Weise jedes andere Geradenbündel wiederfinden kann (jedenfalls in dem Sinne, dass man jedes andere Geradenbündel durch Zurückziehen aus dem…
Auf Spiegel Online wird heute über die Gedächtnisleistungen von Schimpansen berichtet. Schimpansen, denen man (in jahrelanger Arbeit) die Reihenfolge der Ziffern 1-9 beigebracht hat, sind dann in der Lage, die Reihenfolge von auf dem Bildschirm nur 2 Zehntelsekunden lang angezeigten Ziffern aus dem Gedächtnis zu reproduzieren – eine “Sofortgedächtnis”-Leistung, die beim Menschen offenbar verlorengegangen ist.…
Wieder mal scheint ein bekanntes mathematisches Problem gelöst zu sein: die Frage nach Bedingungen für die Existenz von Kähler-Einstein-Metriken. Gang Tian sowie Xiuxiong Chen, Simon Donaldson und Song Sun haben letzte Woche die Endfassungen ihrer Preprints auf das ArXiv gestellt (hier und hier). Einstein-Metriken In der allgemeinen Relativitätstheorie wird die Gravitation durch die Krümmung einer…
Die Vermessung der Welt habe ich leider immer noch nicht gesehen, den Film gibt es weder bei iTunes (immerhin kann man dort für 11,99 Euro die Filmmusik kaufen) noch irgendwo sonst im Netz. Aber zumindest begegnet einem Gauß’ 19th-century-Mathematik auch durchaus bei der Beschäftigung mit heutigerer Topologie immer wieder mal. Zum Beispiel bei der letzte…
Wenn, was ja in letzter Zeit häufig der Fall ist, das Geschäftsgebaren der großen Wissenschaftsverlage kritisiert wird, dann geht es unter anderem auch immer um die Praxis des Bündelns, dass also Bibliotheken quasi gezwungen werden, ein ganzes Bündel von Zeitschriften zu einem zu vereinbarenden Preis zu kaufen und die Zeitschriften innerhalb eines Bündels oft von…
Charakteristische Klassen sollen messen wie getwistet (verdreht) ein Bündel ist. Das Möbiusband zum Beispiel ist – als Bündel über dem Mittelkreis betrachtet – verdrehter als ein Kreisring: weshalb seine charakteristischen Klassen komplizierter sein sollten. (Der Kreisring ist – als Bündel über dem Mittelkreis – sogar völlig unverdreht, weshalb seine charakteristischen Klassen trivial sein sollten.) So…
Universelle Geradenbündel oder: Wie bekommt man höherdimensionale Möbiusbänder? Das Möbiusband als getwistetes Geradenbündel über dem Kreis kann man sich – wie letzte Woche gesehen – denken als Vereinigung der Geraden durch den Nullpunkt der Ebene, wobei der Nullpunkt der Ebene “aufgelöst” (und durch einen Kreis ersetzt) wurde, weil er ja in jeder Gerade vorkommt. Wie…










Letzte Kommentare